Use of pyridine CH(D) vibrations for the study of Lewis acidity of metal oxides

2006 ◽  
Vol 307 (1) ◽  
pp. 98-107 ◽  
Author(s):  
Arnaud Travert ◽  
Alexandre Vimont ◽  
Azziz Sahibed-Dine ◽  
Marco Daturi ◽  
Jean-Claude Lavalley
Keyword(s):  
Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 401 ◽  
Author(s):  
Oscar E. Medina ◽  
Jaime Gallego ◽  
Daniela Arias-Madrid ◽  
Farid B. Cortés ◽  
Camilo A. Franco

The main objective of this work is the catalyst optimization of Fe2O3-, Co3O4-, NiO- and/or PdO- (transition element oxides—TEO) functionalized CeO2 nanoparticles to maximize the conversion of asphaltenes under isothermal conditions at low temperatures (<250 °C) during steam injection processes. Adsorption isotherms and the subsequent steam decomposition process of asphaltenes for evaluating the catalysis were performed through batch adsorption experiments and thermogravimetric analyses coupled to Fourier-transform infrared spectroscopy (FTIR), respectively. The adsorption isotherms and the catalytic behavior were described by the solid-liquid equilibrium (SLE) model and isothermal model, respectively. Initially, three pairs of metal oxide combinations at a mass fraction of 1% of loading of CeNi1Pd1, CeCo1Pd1, and CeFe1Pd1 nanoparticles were evaluated based on the adsorption and catalytic activity, showing better results for the CeNi1Pd1 due to the Lewis acidity changes. Posteriorly, a simplex-centroid mixture design of experiments (SCMD) of three components was employed to optimize the metal oxides concentration (Ni and Pd) onto the CeO2 surface by varying the oxides concentration for mass fractions from 0.0% to 2.0% to maximize the asphaltene conversion at low temperatures. Results showed that by incorporating mono-elemental and bi-elemental oxides onto CeO2 nanoparticles, both adsorption and isothermal conversion of asphaltenes decrease in the order CeNi1Pd1 > CePd2 > CeNi0.66Pd0.66 > CeNi2 > CePd1 > CeNi1 > CeO2. It is worth mentioning that bi-elemental nanoparticles reduced the gasification temperature of asphaltenes in a larger degree than mono-elemental nanoparticles at a fixed amount of adsorbed asphaltenes of 0.02 mg·m−2, confirming the synergistic effects between Pd and Fe, Co, and Ni. Further, optimized nanoparticles (CeNi0.89Pd1.1) have the best performance by obtaining 100% asphaltenes conversion in less than 90 min at 220 °C while reducing 80% the activation energy.


2021 ◽  
pp. 4299-4308
Author(s):  
Jinsun Lee ◽  
Ashwani Kumar ◽  
Min Gyu Kim ◽  
Taehun Yang ◽  
Xiaodong Shao ◽  
...  

Author(s):  
R. Ai ◽  
H.-J. Fan ◽  
L. D. Marks

It has been known for a long time that electron irradiation induces damage in maximal valence transition metal oxides such as TiO2, V2O5, and WO3, of which transition metal ions have an empty d-shell. This type of damage is excited by electronic transition and can be explained by the Knoteck-Feibelman mechanism (K-F mechanism). Although the K-F mechanism predicts that no damage should occur in transition metal oxides of which the transition metal ions have a partially filled d-shell, namely submaximal valence transition metal oxides, our recent study on ReO3 shows that submaximal valence transition metal oxides undergo damage during electron irradiation.ReO3 has a nearly cubic structure and contains a single unit in its cell: a = 3.73 Å, and α = 89°34'. TEM specimens were prepared by depositing dry powders onto a holey carbon film supported on a copper grid. Specimens were examined in Hitachi H-9000 and UHV H-9000 electron microscopes both operated at 300 keV accelerating voltage. The electron beam flux was maintained at about 10 A/cm2 during the observation.


Author(s):  
Michel Fialin ◽  
Guy Rémond

Oxygen-bearing minerals are generally strong insulators (e.g. silicates), or if not (e.g. transition metal oxides), they are included within a rock matrix which electrically isolates them from the sample holder contacts. In this respect, a thin carbon layer (150 Å in our laboratory) is evaporated on the sections in order to restore the conductivity. For silicates, overestimated oxygen concentrations are usually noted when transition metal oxides are used as standards. These trends corroborate the results of Bastin and Heijligers on MgO, Al2O3 and SiO2. According to our experiments, these errors are independent of the accelerating voltage used (fig.l).Owing to the low density of preexisting defects within the Al2O3 single-crystal, no significant charge buildup occurs under irradiation at low accelerating voltage (< 10keV). As a consequence, neither beam instabilities, due to electrical discharges within the excited volume, nor losses of energy for beam electrons before striking the sample, due to the presence of the electrostatic charge-induced potential, are noted : measurements from both coated and uncoated samples give comparable results which demonstrates that the carbon coating is not the cause of the observed errors.


1977 ◽  
Vol 38 (C1) ◽  
pp. C1-333-C1-336 ◽  
Author(s):  
P. CAVALLOTTI ◽  
R. ROBERTI ◽  
G. CAIRONI ◽  
G. ASTI

2014 ◽  
Vol 59 (4) ◽  
pp. 401-404
Author(s):  
G.S. Dragan ◽  
◽  
K.V. Kolesnikov ◽  
V.M. Ulianytskyi ◽  
◽  
...  

2018 ◽  
Author(s):  
Felix Hemmann ◽  
Jonathan Hackebeil ◽  
Andreas Lißner ◽  
Florian Mertens

Molecular sieves with beta zeolite topology are promising catalysts for various reactions as they exhibits extraordinary Lewis acidity. However, their industrial application and related research in academica is hindered because their synthesis is time consuming and typically involves toxic chemicals as hydrofluoric acid. Therefore, tetraethylammonium fluorid was tested as a non-toxic fluotide source for the synthesis of beta zeolites. In combination with the previously reported nano-seeded growth method, a fast synthesis of beta zeolites only involving non-toxic chemicals was possible. Synthesized zeolites show comparable selectivity in the Bayer-Villinger oxidation as conventional zeolites synthesized with hydrofluoric acid.<br>


Sign in / Sign up

Export Citation Format

Share Document