surface basicity
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 26)

H-INDEX

22
(FIVE YEARS 3)

Ceramist ◽  
2021 ◽  
Vol 24 (4) ◽  
pp. 438-445
Author(s):  
Goune Choi ◽  
Bonjae Koo

The conversion of methane to a value-added chemical is important for methane utilization and industrial demand for primary chemicals. Oxidative coupling of methane (OCM) to C2 hydrocarbons is one of the most attractive ways to use natural gas. However, it is difficult to obtain higher C2 yield in classic OCM reaction due to a favorable COx formation. Regarding this, various catalysts for OCM have been studied to fulfill desirable C2 yields. In this review, we briefly overview the single metal oxide types of OCM catalysts (alkaline-earth metal oxides and rare-earth metal oxides) and highlight the characteristics of catalysts in OCM reaction such as methane activation, surface basicity and lattice oxygen.


Author(s):  
Lei Jin ◽  
Ehab Shaaban ◽  
Scott Bamonte ◽  
Daniel Cintron ◽  
Seth Shuster ◽  
...  

Author(s):  
H.S. Goswami ◽  
Shveta Acharya

Perovskite type oxide are known to be catalysts for a number of reactions such as total and partial oxidation, hydrocracking, hydrogeneous, hydrogenolysis and reduction etc. Efforts has largely been directed towards synthesis of unsupported and supported perovskites oxides of moderates or high specific area, their bulk and surface properties and their role in heterogenous catalysis. Oxidation of aromatic and aliphatic hydrocarbon over LaMO3 (M=Al, Ni, Mn, Co, Fe, Cr etc.) perovskites have been studied. Vapour phase catalytic oxidation of toluene over perovskites Viz., LaCoO3, LaCoO3/ SiO2 and LaCoO3/Al2O3 has been studied. The characterization of the catalyst was carried out using technique Viz. I.R., Surface area, Packing density. Surface acidity, Surface basicity. The surface area measurements in the temperature range 350ºC to 600ºC. The maximum surface area & maximum activity was observed at 450ºC. The heterogeneous catalytic vapour phase oxidation of toluene give benzaldehyde, benzoic acid, maleic acid and CO2 as products over LaCoO3 and LaCoO3 supported on Al2O3 and SiO2 as catalyst. The LaCoO3 supported on Al2O3 has been found to be the most active and selective catalyst giving 84.0% selectivity for benzaldehyde at 450⁰C with surface area 78.9m2/g. The overall Kinetic analysis indicate that the oxidation of Toluene to benzaldehyde is first order. The order of catalytic reactivity is LaCoO3/Al2O3 > LaCoO3/ SiO2 > LaCoO3.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2358
Author(s):  
Julio González-García ◽  
Lifang Chen ◽  
Omar Campuzano-Calderon ◽  
Sara Núñez-Correa ◽  
Enrique A. López-Guajardo ◽  
...  

A systematic study over different treatment conditions, including hydrothermal and acid-thermal, was successfully carried out to determine the most suitable conditions to enhance the textural properties and surface chemical composition of natural dolomite. The reconstruction of dolomite after various treatments enhanced the surface area by 4–5 times and diminished the pore diameter between 70% and 81% compared to the untreated parent dolomite. The Rietveld analysis of the X-ray diffraction (XRD) patterns revealed changes in the crystalline compositions after each treatment. When the treated dolomite was used as a catalyst to produce glycerol carbonate via a transesterification reaction of glycerol and dimethyl carbonate, the crystalline Ca(OH)2 concentration of the modified dolomite and the apparent glycerol carbonate formation rate (rgc) are well-correlated. The results suggest that an increase of the crystalline Ca(OH)2 concentration could be related with surface basicity at the weak and moderate strength sites that may lead to an increase in catalytic activity. The hydrothermal treated dolomite showed a selectivity of glycerol carbonate greater than 99% and rgc value 3.42 mmol/min·gcat, which was higher than that achieved on other samples. This study could aid to the proper selection of dolomite treatment for the desired crystalline composition, depending on the applications of this highly available mineral.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2412
Author(s):  
Ahmed Abasaeed ◽  
Samsudeen Kasim ◽  
Wasim Khan ◽  
Mahmud Sofiu ◽  
Ahmed Ibrahim ◽  
...  

Development of a transition metal based catalyst aiming at concomitant high activity and stability attributed to distinguished catalytic characteristics is considered as the bottleneck for dry reforming of methane (DRM). This work highlights the role of modifying zirconia (ZrO2) and alumina (Al2O3) supported nickel based catalysts using lanthanum oxide (La2O3) varying from 0 to 20 wt% during dry reforming of methane. The mesoporous catalysts with improved BET surface areas, improved dispersion, relatively lower reduction temperatures and enhanced surface basicity are identified after La2O3 doping. These factors have influenced the catalytic activity and higher hydrogen yields are found for La2O3 modified catalysts as compared to base catalysts (5 wt% Ni-ZrO2 and 5 wt% Ni-Al2O3). Post-reaction characterizations such as TGA have showed less coke formation over La2O3 modified samples. Raman spectra indicates decreased graphitization for La2O3 catalysts. The 5Ni-10La2O3-ZrO2 catalyst produced 80% hydrogen yields, 25% more than that of 5Ni-ZrO2. 5Ni-15La2O3-Al2O3 gave 84% hydrogen yields, 8% higher than that of 5Ni-Al2O3. Higher CO2 activity improved the surface carbon oxidation rate. From the study, the extent of La2O3 loading is dependent on the type of oxide support.


2021 ◽  
pp. 103134
Author(s):  
Mansur Moulavi ◽  
Kaluram Kanade ◽  
Dinesh Amalnerkar ◽  
Amanullah Fatehmulla ◽  
Abdullah.M. Aldhafiri ◽  
...  

Author(s):  
Lyudmila A. Novikova ◽  
Natalia A. Khodosova Natalia A. ◽  
Larissa I. Belchinskaya ◽  
Frank Roessner

Montmorillonite and nontronite are layered aluminosilicates of smectite group minerals widely demanded in many industries owing to their unique physical-chemical and other properties. By thermal activation of raw clays there are variations in their porosity, surface area and physical-chemical properties, including formation and redistribution of surface active site of acid-base or redox character. The aim of present studies included investigation of the effect of thermal activation on the character of distribution and a number of basic sites on the surface of natural layered aluminosilicates by means of the new method of inverse thermoprogrammed desorption of СО2. Samples of natural aluminosilicates rich in montmorillonite (Montmorillonite 67%, illite 5%, quartz 5%, feldspars 21%) and nontronite (nontronite 70%, illite 10%, kaolinite 5%, quartz 10%, feldspars 8%) were characterized by XRD, XRF, BET N2 adsorption techniques. To probe surface basicity and determine the number of basic sites a new iTPD-CO2 was used. Prior the iTPD-CO2 measurement 100 mg of a sample was activated at 200, 300, 400oC, then cooled down and loaded with CO2 (3ml/min flow rate of CO2 for30 min). Next, the reactor was flushed by 5 ml/min N2-flow to desorb weakly sorbed CO2. The iTPD-CO2 profiles were recorded within 20-800oC at a 20oC/min heating rate and treated using ChemStation software. The experimental profiles of CO2 desorption for Mt and Nt samples observed two temperature regions. Low temperature peaks evolved around 80-90oC for Mt and between 110-127oC for Nt were most likely related to the weak basic sites, whereas high temperature peaks around 510 and 620oC for Mt and above 320oC for Nt testified to stronger ones. The reasoning of the obtained iTPD-profiles was done considering thermal behavior of layered aluminosilicates. The total basicity of Nt and Mt samples was 359.2 and 209.9 mmol/g respectively. The 1.6 times higher basicity of Nt was, obviously, caused by its phase and chemical composition and developed surface area and porosity. At higher activation temperatures the number of weak basic sites related to hydroxyl groups of adsorbed water molecules gradually decreased, namely, by 21 times for Mt and by 2.8 times for Nt. Dehydroxylation of structural Al-OH, Fe-OH, Mg-OH above 200oC, which becomes irreversible above 300oC, provided formation of residual oxygen atoms and their contribution to population of stronger basic sites. In accordance with thermal behavior of dioctahedral smectites, is assumed that strong basic sites of Mt are trans- and cis-vacant Al-OH groups dehydroxylating correspondingly at ~550 and 650oC. Fe-rich sample of Nt rapidly lost hydroxyls at rather lower temperatures that resulted in more heterogeneous distribution of strong basic sites of varying strength. At higher activation temperatures the ratio of stronger sites number to weak sites increased from 23 to 200 for Mt, whereas for Nt this ratio varied between 54-67 times. In general, total basicity of Mt and Nt decreased by 2.2-2.3 times as a result of their dehydration and dehydroxylation by thermal activation. The normalized values of basicity per unit surface area (BΣ/S, mmol/m2) were 1,5 times higher for Mt surface, testifying to higher occupancy and density of active sites for Mt than that of Nt.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 711
Author(s):  
Adrián Barroso-Bogeat ◽  
Ginesa Blanco ◽  
Juan José Pérez-Sagasti ◽  
Carlos Escudero ◽  
Eric Pellegrin ◽  
...  

Despite the increasing economic incentives and environmental advantages associated to their substitution, carbon-rich fossil fuels are expected to remain as the dominant worldwide source of energy through at least the next two decades and perhaps later. Therefore, both the control and reduction of CO2 emissions have become environmental issues of major concern and big challenges for the international scientific community. Among the proposed strategies to achieve these goals, conversion of CO2 by its reduction into high added value products, such as methane or syngas, has been widely agreed to be the most attractive from the environmental and economic points of view. In the present work, thermocatalytic reduction of CO2 with H2 was studied over a nanostructured ceria-supported nickel catalyst. Ceria nanocubes were employed as support, while the nickel phase was supported by means a surfactant-free controlled chemical precipitation method. The resulting nanocatalyst was characterized in terms of its physicochemical properties, with special attention paid to both surface basicity and reducibility. The nanocatalyst was studied during CO2 reduction by means of Near Ambient Pressure X-ray Photoelectron Spectroscopy (NAP-XPS). Two different catalytic behaviors were observed depending on the reaction temperature. At low temperature, with both Ce and Ni in an oxidized state, CH4 formation was observed, whereas at high temperature above 500 °C, the reverse water gas shift reaction became dominant, with CO and H2O being the main products. NAP-XPS was revealed as a powerful tool to study the behavior of this nanostructured catalyst under reaction conditions.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 138
Author(s):  
Nurul Razali ◽  
James McGregor

Improved yields of, and selectivities to, value-added products synthesised from glycerol are shown to be achieved through the judicious selection of dehydrating agents and through the development of improved catalysts. The direct carboxylation of glycerol with CO2 over lanthanum-based catalysts can yield glycerol carbonate in the presence of basic species, or acetins in the presence of acidic molecules. The formation of glycerol carbonate is thermodynamically limited; removal of produced water shifts the chemical equilibrium to the product side. Acetonitrile, benzonitrile and adiponitrile have been investigated as basic dehydrating agents to promote glycerol carbonate synthesis. In parallel, acetic anhydride has been studied as an acidic dehydrating agent to promote acetin formation. Alongside this, the influence of the catalyst synthesis method has been investigated allowing links between the physicochemical properties of the catalyst and catalytic performance to be determined. The use of acetonitrile and La catalysts allows the results for the novel dehydrating agents to be benchmarked against literature data. Notably, adiponitrile exhibits significantly enhanced performance over other dehydrating agents, e.g., achieving a 5-fold increase in glycerol carbonate yield with respect to acetonitrile. This is in part ascribed to the fact that each molecule of adiponitrile has two nitrile functionalities to promote the reactive removal of water. In addition, mechanistic insights show that adiponitrile results in reduced by-product formation. Considering by-product formation, 4-hydroxymethyl(oxazolidin)-2-one (4-HMO) has, for the first time, been observed in all reaction systems using cyanated species. Studies investigating the influence of the catalyst synthesis route show a complex relationship between surface basicity, surface area, crystallite phase and reactivity. These results suggest alternative strategies to maximise the yield of desirable products from glycerol through tailoring the reaction chemistry and by-product formation via an appropriate choice of dehydrating agents and co-reagents.


2021 ◽  
Author(s):  
Deepak Joshy ◽  
Seena Chacko ◽  
Yahya Ahmed Ismail ◽  
Pradeepan Periyat

Herein we first report surface basicity mediated rapid and selective adsorptive removal of congored from mixture of organic pollutant over nanocrystalline mesoporous CeO2. The surface basicity of mesoporous CeO2 nanoparticles...


Sign in / Sign up

Export Citation Format

Share Document