“Responsive” ionic liquid to catalyze the transformation of carbon dioxide under atmospheric pressure

2021 ◽  
pp. 118241
Author(s):  
Fang Liu ◽  
Yuhang Hu ◽  
Jingsheng Zhou ◽  
Zhengkun Zhang ◽  
Zhiyong Zhu ◽  
...  
Author(s):  
Shu-Mei Xia ◽  
Yu Song ◽  
Xue-Dong Li ◽  
Hong-Ru Li ◽  
Liang-Nian He

To circumvent the thermodynamic limitation of the synthesis of oxazolidinones starting from 2-aminoethanols and CO2 and realize incorporation CO2 under atmospheric pressure, a protic ionic liquid-facilitated three-component reaction of propargyl alcohols, CO2 and 2-aminoethanols was developed to produce 2-oxazolidinones along with equal amount of α-hydroxyl ketones. The ionic liquid structure, reaction temperature and reaction time were in detail investigated. And 15 mol% [TBDH][TFE] (1,5,7-triazabicylo[4.4.0]dec-5-ene trifluoroethanol) was found to be able to synergistically activate the substrate and CO2, thus catalyzing this cascade reaction under atmospheric CO2 pressure. By employing this task-specific ionic liquid as sustainable catalyst, 2-aminoethanols with different substituents were successfully transformed to 2-oxazolidinones with moderate to excellent yield after 12 h at 80 oC. This three-component reaction running under atmospheric pressure proves to be a clever detour to avoid the thermodynamic issue in the synthesis of 2-oxazolidinones starting from 2-aminoethanols and CO2.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 3033 ◽  
Author(s):  
Shumei Xia ◽  
Yu Song ◽  
Xuedong Li ◽  
Hongru Li ◽  
Liang-Nian He

To circumvent the thermodynamic limitation of the synthesis of oxazolidinones starting from 2-aminoethanols and CO2 and realize incorporation CO2 under atmospheric pressure, a protic ionic liquid-facilitated three-component reaction of propargyl alcohols, CO2 and 2-aminoethanols was developed to produce 2-oxazolidinones along with equal amount of α-hydroxyl ketones. The ionic liquid structure, reaction temperature and reaction time were in detail investigated. And 15 mol% 1,5,7-triazabicylo[4.4.0]dec-5-ene ([TBDH][TFE]) trifluoroethanol was found to be able to synergistically activate the substrate and CO2, thus catalyzing this cascade reaction under atmospheric CO2 pressure. By employing this task-specific ionic liquid as sustainable catalyst, 2-aminoethanols with different substituents were successfully transformed to 2-oxazolidinones with moderate to excellent yield after 12 h at 80 °C.


2012 ◽  
Vol 65 (4) ◽  
pp. 381 ◽  
Author(s):  
Qing Gong ◽  
Huadong Luo ◽  
Jin Cao ◽  
Yuhan Shang ◽  
Haibo Zhang ◽  
...  

Herein, we report an effective synthesis of cyclic carbonates by cycloaddition of carbon dioxide to epoxide using a modified amino acid ionic liquid as catalyst under 1 atm pressure. With triethylamine as co-catalyst, the catalytic activity of the l-proline based ionic liquid was greatly enhanced, and up to 97 % isolated yield of cyclic carbonate was achieved at 90°C under atmospheric pressure without organic solvent and metal component.


2018 ◽  
Vol 14 (8) ◽  
Author(s):  
Zhi-Hua Zhou ◽  
Chun-Xiang Guo ◽  
Jia-Ning Xie ◽  
Kai-Xuan Liu ◽  
Liang-Nian He

2021 ◽  
Author(s):  
Yasunori Toda ◽  
Minoru Shishido ◽  
Tatsuya Aoki ◽  
Kimiya Sukegawa ◽  
Hiroyuki Suga

The base-promoted switchable synthesis of five- and six-membered cyclic carbamates using atmospheric pressure of carbon dioxide as the C1 source was developed. The chemoselectivity of products was simply controlled by...


1974 ◽  
Vol 65 ◽  
pp. 295-316 ◽  
Author(s):  
A.J. Kliore

The radio occultation technique, consisting of the observation of changes in the phase, frequency, and amplitude of a radio signal from a spacecraft as it passes through the atmosphere of a planet before and after occultation, was first applied to measure the atmosphere of Mars with the Mariner IV spacecraft in 1965. The interpretation of these changes in terms of refraction of the radio beam by the neutral atmosphere and ionosphere of the planet provided the first direct and quantitative measurement of its vertical structure and established the surface atmospheric pressure of Mars as lying between 5 and 9 mb. The presence of a daytime ionosphere with a peak electron density of about 105 el cm−3 was also measured. The Mariner VI and VII spacecraft flew by Mars in 1969 and provided an additional four measurements of the atmosphere and surface radius of the planet. They confirmed the surface pressure values measured by Mariner IV and provided data for a crude estimate of the shape of the planet.By far the greatest volume of radio occultation information on the atmosphere and surface of Mars was returned by the Mariner IX orbiter which was placed in orbit about Mars in November of 1971. During three occultation episodes in November-December 1971, May-June 1972, and September-October 1972, the Mariner IX mission provided 260 successful radio occultation measurements.The early measurements, made at the time of the Martian dust storm of 1971, showed greatly reduced temperature gradients in the daytime troposphere, indicating the heating effect of the dust. The temperature gradients that were measured later in the mission, when the atmosphere was apparently free of dust, were still much lower than expected under conditions of radiative-convective balance, indicating that dynamics may play a large part in determining the temperature structure of the Martian troposphere. Temperatures taken at night near the winter poles were consistent with the condensation of carbon dioxide.The surface atmospheric pressure was observed to vary widely with topography ranging from about 1 mb at the summit of the Middle Spot volcano (Pavonis Mons) to over 10 mb in the North circumpolar region. In the South equatorial region the highest surface pressure of about 9 mb was measured at the bottom of the Hellas basin.The radius of the planet was measured with accuracies ranging from about 0.25 to about 2.1 km over latitudes ranging from 86° to −80°. These measurements have shown that Mars has pronounced equatorial and north-south asymmetries, which make it difficult to represent its shape by a simple triaxial figure.The daytime ionosphere measurements indicated that the main ionization peak was similar in behavior to a terrestrial F1 layer and is probably produced by photoionization of carbon dioxide by solar extreme ultraviolet. Comparison of the heights of the maximum between the early data taken in November-December, 1971, and the Extended Mission of May-June 1972, showed that the lower atmospheric temperatures decreased by about 25%, which is consistent with clearing of the atmosphere.The experience gained from Mars radio occultation experiments suggests that the quality of data can be significantly improved by such features of the spacecraft radio system as a stable oscillator, dual frequency downlink capability, and a steerable high-gain antenna.


Sign in / Sign up

Export Citation Format

Share Document