Temperature programmed desorption/surface-reaction study of an anodic alumina supported Ag catalyst for selective catalytic reduction of nitric oxide with propene

2008 ◽  
Vol 79 (4) ◽  
pp. 382-393 ◽  
Author(s):  
Yu Guo ◽  
Makoto Sakurai ◽  
Hideo Kameyama
Catalysts ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 357 ◽  
Author(s):  
Huang ◽  
Li ◽  
Qiu ◽  
Chen ◽  
Cheng ◽  
...  

In the present study, a series of CeO2/TiO2 catalysts were fabricated by dry ball milling method in the absence and presence of organic assistants, and their catalytic performances for the selective catalytic reduction (SCR) of NO by NH3 were investigated. It was found that the addition of organic assistants in the ball milling process and the calcining ambience exerted a significant influence on the catalytic performances of CeO2/TiO2 catalysts. The nitrogen sorption isotherm measurement (BET), powder X-ray diffraction (XRD), Raman spectra, high-resolution transmission electron microscopy (HR-TEM), hydrogen temperature-programmed reduction (H2-TPR), ammonia temperature-programmed desorption (NH3-TPD), sulfur dioxide temperature-programmed desorption (SO2-TPD), thermogravimetric analysis (TG), Fourier transform infrared (FT-IR) and X-ray photoelectron spectra (XPS) characterizations showed that the introduction of citric acid in the ball milling process could significantly change the decomposition process of the precursor mixture, which can lead to improved dispersion and reducibility of cerium species, surface acidity as well as the surface microstructure, all which were responsible for the high low temperature activity of CeTi-C-N in an NH3-SCR reaction. In contrast, the addition of sucrose in the milling process showed an inhibitory effect on the catalytic performance of CeO2/TiO2 catalyst in an NH3-SCR reaction, possibly due to the decrease of the crystallinity of the TiO2 support and the carbon residue covering the active sites.


2014 ◽  
Vol 695 ◽  
pp. 16-19
Author(s):  
Yakub Ibrahim ◽  
Anwar Mohd Said Khairul ◽  
Norsuzailina Mohamed Sutan ◽  
Yun Hin Taufiq-Yap ◽  
Mahmud Surahim

Selective Catalytic Reduction catalyst (Cu-Mn/CSC) was derived from coconut shell carbon (CSC). The bimetallic catalysts, Copper and Manganese (Cu-Mn), were deposited onto CSC using wet impregnation technique while the calcination stage was performed under low temperature ambient air. The samples were then characterized using nitrogen adsorption-and-desorption, carbon dioxide temperature-programmed desorption, ammonia temperature-programmed desorption, hydrogen temperature-programmed reduction as well as scanning electron microscopy. The results showed that the synthesis process increased the external surface area and regulated the distribution of slit-shape pores on Cu-Mn/CSC. Besides, Cu-Mn was found to be reduced and the surface has more acidic groups compared to basic. These findings indicated the potential of using CSC as a precursor for NOx-Selective Catalytic Reduction catalyst.


2010 ◽  
Vol 224 (06) ◽  
pp. 907-920 ◽  
Author(s):  
Fei Li ◽  
Dehai Xiao ◽  
Jing Li ◽  
Xiangguang Yang

AbstractSelective catalytic reduction (SCR) of NO with propane using bimetals (3Co2Ce, 3Co2Sr, 3Co2Sn and 3Co2In) loaded on HMCM-49 zeolite was studied under lean-burn condition. Only 3Co2In/HMCM-49 exhibited higher deNOx activity in a wide temperature range. The catalysts were characterized by N2-adsoption, X-ray diffraction (XRD), temperature-programmed surface reactions (TPSR) and temperature-programmed desorption (TPD) of NO. TPSR and TPD results exhibited that the addition of In inhibited the oxidation ability of Co on 3Co2In/HMCM-49 catalyst, but enhanced NOx adsorption.


Sign in / Sign up

Export Citation Format

Share Document