Thermal performance of a radiant floor heating system with different heat storage materials and heating pipes

2015 ◽  
Vol 138 ◽  
pp. 648-660 ◽  
Author(s):  
Guobing Zhou ◽  
Jing He
Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 828 ◽  
Author(s):  
Sanghoon Baek ◽  
Sangchul Kim

A phase change material (PCM) is an energy storage mass with high heat storage performance. In buildings, PCMs can be utilized to save energy in radiant floor heating systems. This study aims to analyze the thermal performance and energy saving potential by the PCM radiant floor heating system based on wet construction method and hot water. For such analysis, EnergyPlus program was used. As for the results, it was found that the proposed system almost maintained the set point of indoor air and a floor surface. Moreover, when a 10 mm PCM was applied, it was possible to save 2.4% of heating energy annually compared to existing buildings. In particular, when a 20–50 mm PCM was applied, it was found that 7.3–15.3% of heating energy was reduced annually. If indoor air temperature exceeds the comfort range of the proposed system, this problem can be solved by adjusting the set point of the floor surface or by increasing the temperature of hot water.


Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1352 ◽  
Author(s):  
JinChul Park ◽  
TaeWon Kim

This study first reviewed previous studies on floor heating systems based on the installation of a phase change material (PCM) and the current status of technical developments and found that PCM-based research is still in its infancy. In particular, the improvement of floor heat storage performance in indoor environments by combining a PCM with existing floor structures has not been subject to previous research. Thus, a PCM-based radiant floor heating system that utilizes hot water as a heat source and can be used in conjunction with the widespread wet construction method can be considered novel. This study found the most suitable PCM melting temperature for the proposed PCM-based radiant floor heating system ranged from approximately 35 °C to 45 °C for a floor thickness of 70 mm and a PCM thickness of 10 mm. Mock-up test results, which aimed to assess the performance of the radiant floor heating system with and without the PCM, revealed that the PCM-based room was able to maintain a temperature that was 0.2 °C higher than that of the room without the PCM. This was due to the rise in temperature caused by the PCM’s heat storage capacity and the emission of waste heat that was otherwise lost to the underside of the hot water pipe when the PCM was not present.


Sign in / Sign up

Export Citation Format

Share Document