scholarly journals Analysis of Thermal Performance and Energy Saving Potential by PCM Radiant Floor Heating System based on Wet Construction Method and Hot Water

Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 828 ◽  
Author(s):  
Sanghoon Baek ◽  
Sangchul Kim

A phase change material (PCM) is an energy storage mass with high heat storage performance. In buildings, PCMs can be utilized to save energy in radiant floor heating systems. This study aims to analyze the thermal performance and energy saving potential by the PCM radiant floor heating system based on wet construction method and hot water. For such analysis, EnergyPlus program was used. As for the results, it was found that the proposed system almost maintained the set point of indoor air and a floor surface. Moreover, when a 10 mm PCM was applied, it was possible to save 2.4% of heating energy annually compared to existing buildings. In particular, when a 20–50 mm PCM was applied, it was found that 7.3–15.3% of heating energy was reduced annually. If indoor air temperature exceeds the comfort range of the proposed system, this problem can be solved by adjusting the set point of the floor surface or by increasing the temperature of hot water.

2018 ◽  
Vol 10 (11) ◽  
pp. 4004 ◽  
Author(s):  
Sanghoon Baek ◽  
Sangchul Kim

Owing to use of mortar, which demonstrates low heat storage and discharge performance, conventional radiant floor-heating systems, based on the wet construction method and hot-water circulation, consume large amounts of energy. This study proposes a new type of radiant floor-heating system that is capable of reducing energy consumption via use of the latent heat of a phase change material (PCM), whereby the phase change, which occurs within, is induced by the thermal energy supplied by hot water. Simulation analyses revealed that hot-water supply temperatures, required to maintain the floor-surface and indoor-air temperatures at the set point using PCM latent heat, were in the range 40–41 °C. At supply water temperatures measuring less than 39 °C or exceeding 42 °C, the latent-heat effect of the phase change of the PCM tended to fail, and the corresponding floor-surface temperature assumed a value different from that corresponding to the set point. By contrast, supply temperatures in the range 40–41 °C resulted in return temperatures measuring approximately 27.4–27.5 °C, which in turn corresponded to an indoor air temperature of 21.6–22.6 °C that was stably maintained within ±0.6 °C of the 22 °C set-point temperature.


Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1352 ◽  
Author(s):  
JinChul Park ◽  
TaeWon Kim

This study first reviewed previous studies on floor heating systems based on the installation of a phase change material (PCM) and the current status of technical developments and found that PCM-based research is still in its infancy. In particular, the improvement of floor heat storage performance in indoor environments by combining a PCM with existing floor structures has not been subject to previous research. Thus, a PCM-based radiant floor heating system that utilizes hot water as a heat source and can be used in conjunction with the widespread wet construction method can be considered novel. This study found the most suitable PCM melting temperature for the proposed PCM-based radiant floor heating system ranged from approximately 35 °C to 45 °C for a floor thickness of 70 mm and a PCM thickness of 10 mm. Mock-up test results, which aimed to assess the performance of the radiant floor heating system with and without the PCM, revealed that the PCM-based room was able to maintain a temperature that was 0.2 °C higher than that of the room without the PCM. This was due to the rise in temperature caused by the PCM’s heat storage capacity and the emission of waste heat that was otherwise lost to the underside of the hot water pipe when the PCM was not present.


Sign in / Sign up

Export Citation Format

Share Document