scholarly journals Performance prediction of horizontal hydrokinetic energy converter using multiple-cylinder synergy in flow induced motion

2016 ◽  
Vol 170 ◽  
pp. 92-100 ◽  
Author(s):  
Eun Soo Kim ◽  
Michael M. Bernitsas
2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Katarina Yuen ◽  
Senad Apelfröjd ◽  
Mats Leijon

At Uppsala University, a research group is investigating a system for converting the power in freely flowing water using a vertical-axis turbine directly connected to a permanent magnet generator. An experimental setup comprising a turbine, a generator, and a control system has been constructed and will be deployed in the Dalälven river in the town of Söderfors in Sweden. The design, construction, simulations, and laboratory tests of the control system are presented in this paper. The control system includes a startup sequence for the turbine and load control. These functions have performed satisfactorily in laboratory tests. Simulations of the system show that the power output is not maximized at the same tip-speed ratio as that which maximizes the turbine power capture.


2011 ◽  
Vol 25 (4) ◽  
pp. 28-35 ◽  
Author(s):  
Bo-Woo Nam ◽  
Sa-Young Hong ◽  
Ki-Bum Kim ◽  
Ji-Yong Park ◽  
Seung-Ho Shin

Author(s):  
Che-Chun Chang ◽  
Michael M. Bernitsas

Passive turbulence control (PTC) in the form of selectively applied surface roughness is used on a rigid circular cylinder supported by two end-springs in transverse steady flow. The flow-induced motions are enhanced dramatically reaching the limits of the experimental facility and motion mechanism at amplitude to diameter ratio A/D ≅ 3. In comparison to a smooth cylinder, in the fully turbulent shear layer flow regime at Reynolds number on the order of 100,000, PTC initiates VIV earlier at reduce velocity U* ≅ 4, reduces VIV amplitude depending on damping, and initiates galloping at U* ≅ 10 rather than 20. Thus, back-to-back VIV and galloping are achieved expanding the synchronization range of Flow Induced Motion (FIM) beyond U* ≅ 15 and the capabilities of the experimental set-up. The harnessed horizontal hydrokinetic power increased by a factor of four due to increased velocities in the synchronization range without any adjustment of the motion mechanism particulars.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 717
Author(s):  
Iro Malefaki ◽  
Efstathios Konstantinidis

Vortex-induced oscillations offer a potential means to harness hydrokinetic energy even at low current speeds. In this study, we consider a novel converter where a cylinder undergoes angular oscillations with respect to a pivot point, in contrast to most previous configurations, where the cylinder undergoes flow-induced oscillations transversely to the incident free stream. We formulate a theoretical model to deal with the coupling of the hydrodynamics and the structural dynamics, and we numerically solve the resulting nonlinear equation of cylinder motion in order to assess the performance of the energy converter. The hydrodynamical model utilizes a novel approach where the fluid forces acting on the oscillating cylinder are split into components acting along and normal to the instantaneous relative velocity between the moving cylinder and the free stream. Contour plots illustrate the effects of the main design parameters (in dimensionless form) on the angular response of the cylinder and the energy efficiency of the converter. Peak efficiencies of approximately 20% can be attained by optimal selection of the main design parameters. Guidelines on the sizing of actual converters are discussed.


Author(s):  
Hai Sun ◽  
Eun Soo Kim ◽  
Marinos P. Bernitsas ◽  
Michael M. Bernitsas

Flow-induced motion (FIM) experiments of a single circular cylinder or multiple cylinders in an array involve several configuration and hydrodynamic parameters, such as diameter, mass, damping, stiffness, spacing, Reynolds number, and flow regime, and deviation from circular cross section. Due to the importance of the FIM both in suppression for structural robustness and in enhancement for hydrokinetic energy conversion, systematic experiments are being conducted since the early 1960s and several more decades of experimentation are required. Change of springs and dampers is time consuming and requires frequent recalibration. Emulating springs and dampers with a controller makes parameter change efficient and accurate. There are two approaches to this problem: The first involves the hydrodynamic force in the closed-loop and is easier to implement. The second called virtual damping and spring (Vck) does not involve the hydrodynamic force in the closed-loop but requires an elaborate system identification (SI) process. Vck was developed in the Marine Renewable Energy Laboratory (MRELab) of the University of Michigan for the first time in 2009 and resulted in extensive data generation. In this paper, the second generation of Vck is developed and validated by comparison of the FIM experiments between a Vck emulated oscillator and an oscillator with physical springs and dampers. The main findings are: (a) the Vck system developed keeps the hydrodynamic force out of the control-loop and, thus, does not bias the FIM, (b) The controller-induced lag is minimal and significantly reduced compared to the first generation of Vck built in the MRELab due to use of an Arduino embedded board to control a servomotor instead of Labview, (c) The SI process revealed a static, third-order, nonlinear viscous model but no need for dynamic terms with memory, and (d) The agreement between real and virtual springs and dampers is excellent in FIM including vortex-induced vibrations (VIVs) and galloping measurements over the entire range of spring constants and velocities tested (16,000 < Re < 140,000).


2001 ◽  
Author(s):  
Makoto Kaminaga ◽  
Motoo Ishikawa ◽  
Suguru Mima ◽  
Yasunori Yasaka ◽  
Yukihiro Tomita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document