Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion

2016 ◽  
Vol 180 ◽  
pp. 661-671 ◽  
Author(s):  
Ahmed M. Mustafa ◽  
Tjalfe G. Poulsen ◽  
Kuichuan Sheng
Author(s):  
Hamed A. A. Omer ◽  
Sawsan M. Ahmed ◽  
Roshdy I. El-Kady ◽  
Aly A. El-Shahat ◽  
Mahmoud Y. El-Ayek ◽  
...  

Abstract Background Agriculture by-products are considered a great potential value for utilization by ruminants as well as rabbits. They usually can be the maintenance and part of the production requirements. However, in developing countries, as well as in Egypt, animals suffer from shortage of feeds that are continuously increasing in costs. In general, biological treatments were shown to be the most effective and improved chemical composition of rice straw or corn stalks. Method This work aimed to investigate the possible ways of utilizing rice straws or corn stalks in rabbit feeding. The field work is designed to study the effect of biological treatment of Pleurotus ostreatus cultivated on rice straws and Trichoderma reesei cultivated on corn stalks and replacing clover hay by rice straws and corn stalks at levels of 0, 33, 66, and 100% either without or with microbes adding. Seventy-eight New Zealand White (NZW) rabbits aged 4–5 weeks (565 ± 13.57 g) were randomly divided into thirteen equal experimental groups. Results Untreated rice straws or biologically treated with Pleurotus ostreatus increased their contents of crude protein (CP) by 178.75 and 224.5% and nitrogen-free extract (NFE) by 6.30 and 24.53, respectively. Meanwhile, crude fiber (CF) content was reduced by 31.32 and 56.75%, and organic matter content was decreased by 2.81 and 5.51%, respectively, in comparison with the raw rice straws. Also, biological treatment of rice straws caused a decrease in values of neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), and hemicellulose contents in comparison with either raw or treated rice straws. Furthermore, biological treatment with Trichoderma reesei realized a decrease in organic matter (OM), CF, NDF, and ADF and increased CP and ash contents in corn stalks. NFE content of corn stalks was decreased as a result of treatment without or with Trichoderma reesei experimental rations by 11.95% and 3.82% compared to raw corn stalks (CS). Biological treatments with fungi significantly (P < 0.05) improved average daily gain (ADG) and feed conversion. ADG and feed conversion were significantly (P < 0.05) improved when rabbits were fed diets containing rice straw (RS) compared to that fed CS. Rabbits fed diets replaced clover hay (CH) with 33% or 66% of RS or CS significantly increased ADG compared to control and that replaced 100% of both RS and CS containing rations. Levels of replacing had no significant effect on their dry matter intake (DMI) values. The highest improvement in feed conversion was recorded with rabbits that received diets replaced 33% of berseem hay (BH) by RS or CS, followed by that replaced 66% of BH by RS or CS. There were significantly interactions between biological treatments (T), roughage source (S), and replacement levels (L) (T × S × L) only on ADG. The best fed conversion was realized by rabbits fed diet replaced BH with 33% of RS that are treated by Pleurotus ostreatus (4.05 g DMI/g gain). Rabbits fed 33% biologically treated rice straw with Pleurotus ostreatus showed the highest economic efficiency (179%) followed by rabbits that received 33% of both rice straws treated without Pleurotus ostreatus and rabbits that received corn stalks biologically treated with Trichoderma reesei (161%). Conclusion Biological treatments of rice straws by Pleurotus ostreatus or corn stalks by Trichoderma reesei were safe, and it improves their chemical analysis and improved both daily gain and feed conversion, decreasing the costing of diet formulation which consequently decreased the price of 1-kg live body weight.


2019 ◽  
Vol 277 ◽  
pp. 216-220 ◽  
Author(s):  
Lingyu Meng ◽  
Koki Maruo ◽  
Li Xie ◽  
Shohei Riya ◽  
Akihiko Terada ◽  
...  

2017 ◽  
Vol 224 ◽  
pp. 78-86 ◽  
Author(s):  
Ying Zhou ◽  
Chao Li ◽  
Ivo Achu Nges ◽  
Jing Liu

Energy ◽  
2020 ◽  
Vol 206 ◽  
pp. 118107
Author(s):  
Altaf Alam Noonari ◽  
Rasool Bux Mahar ◽  
Abdul Razaque Sahito ◽  
Khan Muhammad Brohi

2020 ◽  
Vol 11 ◽  
pp. 100472
Author(s):  
Weiwei Huang ◽  
Fei Yang ◽  
Wenli Huang ◽  
Zhongfang Lei ◽  
Zhenya Zhang

2019 ◽  
Vol 293 ◽  
pp. 122066 ◽  
Author(s):  
Yang Liu ◽  
Junnan Fang ◽  
Xinyu Tong ◽  
ChenChen Huan ◽  
Gaosheng Ji ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document