Enhanced methane production from anaerobic digestion of rice straw pretreated by Fe3+/CaO2 catalyzed Fenton-like process

2020 ◽  
Vol 11 ◽  
pp. 100472
Author(s):  
Weiwei Huang ◽  
Fei Yang ◽  
Wenli Huang ◽  
Zhongfang Lei ◽  
Zhenya Zhang
2014 ◽  
Vol 587-589 ◽  
pp. 208-211 ◽  
Author(s):  
Ben Lin Dai ◽  
An Feng Zhu ◽  
Fei Hu Mu ◽  
Ning Xu ◽  
Zhen Wu

The chemical pretreatment of rice straw was achieved via the liquid-state dissolution of CaCO3. Pretreatment effects on the biodegradability and subsequent anaerobic production of methane were investigated. The results showed that the peak value of biogas production was attained of 4% CaCO3 pretreatment on the 20th day, which is 1 589 mL. The test daily methane content of different pretreatment conditions mainly ranges from 3.4% to 47.4%. The cumulative biogas production of 6% CaCO3 pretreatment was the highest, about 19 917 mL.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3960
Author(s):  
Lina Luo ◽  
Youpei Qu ◽  
Weijia Gong ◽  
Liyuan Qin ◽  
Wenzhe Li ◽  
...  

The effect of reducing particle size on physical properties, the methane yield and energy flow were investigated through the biochemical methane potential (BMP) experiment of aerobic-anaerobic digestion (AAD) of rice straw (RS). The whole straw was crushed through four sieves of different aperture sizes (1, 3, 5, and 7 mm) to obtain the actual and non-uniform particle size distribution (PSD). The results indicated that the actual particle sizes were normally or logarithmic normally distributed. Reducing particle size could significantly promote the aerobic hydrolysis and acidification process, increase the content of volatile fatty acids (VFAs) from 4408.78 to 6225.15 mg/L and the degradation of volatile solids (VS) from 40.56% to 50.49%. The results of path analysis suggested that particle size reduction played an important role in improving lignocellulosic degradability, which was the main factor affecting methane production with the comprehensive decision of 0.4616. The maximum methane production obtained at 1 mm sieve size was 176.47 mLCH4g−1 VS. The phyla of Firmicutes (61.5%), Proteobacteria (9.3%), Chloroflexi (8.3%), Bacteroidetes (4.1%), Cyanobacteria/Chloroplast (4.6%) were mainly responsible for VFAs production and lignocellulose degradation. However, the net negative energy balance was observed at the 1 mm sieve size due to the increased energy input. Therefore, the optimum sieve size for AAD was 3 mm.


RSC Advances ◽  
2018 ◽  
Vol 8 (40) ◽  
pp. 22643-22651 ◽  
Author(s):  
Yuanfang Deng ◽  
Ling Qiu ◽  
Yiqing Yao ◽  
Mengyao Qin

Overcoming the complex three dimensional structure of biomass is a major challenge in enhancing anaerobic digestion (AD) efficacy.


Author(s):  
D. de la Lama-Calvente ◽  
M. J. Fernández-Rodríguez ◽  
J. Llanos ◽  
J. M. Mancilla-Leytón ◽  
R. Borja

AbstractThe biomass valorisation of the invasive brown alga Rugulopteryx okamurae (Dictyotales, Phaeophyceae) is key to curbing the expansion of this invasive macroalga which is generating tonnes of biomass on southern Spain beaches. As a feasible alternative for the biomass management, anaerobic co-digestion is proposed in this study. Although the anaerobic digestion of macroalgae barely produced 177 mL of CH4 g−1 VS, the co-digestion with a C-rich substrate, such as the olive mill solid waste (OMSW, the main waste derived from the two-phase olive oil manufacturing process), improved the anaerobic digestion process. The mixture improved not only the methane yield, but also its biodegradability. The highest biodegradability was found in the mixture 1 R. okamurae—1 OMSW, which improved the biodegradability of the macroalgae by 12.9% and 38.1% for the OMSW. The highest methane yield was observed for the mixture 1 R. okamurae—3 OMSW, improving the methane production of macroalgae alone by 157% and the OMSW methane production by 8.6%. Two mathematical models were used to fit the experimental data of methane production time with the aim of assessing the processes and obtaining the kinetic constants of the anaerobic co-digestion of different combination of R. okamurae and OMSW and both substrates independently. First-order kinetic and the transference function models allowed for appropriately fitting the experimental results of methane production with digestion time. The specific rate constant, k (first-order model) for the mixture 1 R. okamurae- 1.5 OMSW, was 5.1 and 1.3 times higher than that obtained for the mono-digestion of single OMSW and the macroalga, respectively. In the same way, the transference function model revealed that the maximum methane production rate (Rmax) was also found for the mixture 1 R. okamurae—1.5 OMSW (30.4 mL CH4 g−1 VS day−1), which was 1.6 and 2.2 times higher than the corresponding to the mono-digestions of the single OMSW and sole R. okamurae (18.9 and 13.6 mL CH4 g−1 VS day−1), respectively.


Sign in / Sign up

Export Citation Format

Share Document