Cyclic thermal characterization of a molten-salt packed-bed thermal energy storage for concentrating solar power

2017 ◽  
Vol 195 ◽  
pp. 761-773 ◽  
Author(s):  
Bing-chen Zhao ◽  
Mao-song Cheng ◽  
Chang Liu ◽  
Zhi-min Dai
2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Carolina Mira-Hernández ◽  
Scott M. Flueckiger ◽  
Suresh V. Garimella

A molten-salt thermocline tank is a low-cost option for thermal energy storage (TES) in concentrating solar power (CSP) plants. Typical dual-media thermocline (DMT) tanks contain molten salt and a filler material that provides sensible heat capacity at reduced cost. However, conventional quartzite rock filler introduces the potential for thermomechanical failure by successive thermal ratcheting of the tank wall under cyclical operation. To avoid this potential mode of failure, the tank may be operated as a single-medium thermocline (SMT) tank containing solely molten salt. However, in the absence of filler material to dampen tank-scale convection eddies, internal mixing can reduce the quality of the stored thermal energy. To assess the relative merits of these two approaches, the operation of DMT and SMT tanks is simulated under different periodic charge/discharge cycles and tank wall boundary conditions to compare the performance with and without a filler material. For all conditions assessed, both thermocline tank designs have excellent thermal storage performance, although marginally higher first- and second-law efficiencies are predicted for the SMT tank. While heat loss through the tank wall to the ambient induces internal flow nonuniformities in the SMT design over the scale of the entire tank, strong stratification maintains separation of the hot and cold regions by a narrow thermocline; thermocline growth is limited by the low thermal diffusivity of the molten salt. Heat transport and flow phenomena inside the DMT tank, on the other hand, are governed to a great extent by thermal diffusion, which causes elongation of the thermocline. Both tanks are highly resistant to performance loss over periods of static operation, and the deleterious effects of dwell time are limited in both tank designs.


Author(s):  
Craig S. Turchi ◽  
Zhiwen Ma ◽  
John Dyreby

Concentrating Solar Power (CSP) plants utilize oil, molten salt or steam as the heat transfer fluid (HTF) to transfer solar energy to the power block. These fluids have properties that limit plant performance; for example, the synthetic oil and molten salt have upper temperature limits of approximately 390°C and 565°C, respectively. While direct steam generation has been tested, it requires complex controls and has limited options for integration of thermal energy storage. Use of carbon dioxide as the HTF and power cycle working fluid offers the potential to increase thermal cycle efficiency while maintaining simplicity of operation and thermal storage options. Supercritical CO2 (s-CO2) operated in a closed-loop recompression Brayton cycle offers the potential of higher cycle efficiency versus superheated or supercritical steam cycles at temperatures relevant for CSP applications. Brayton-cycle systems using s-CO2 have smaller weight and volume, lower thermal mass, and less complex power blocks versus Rankine cycles due to the higher density of the fluid and simpler cycle design. Many s-CO2 Brayton power cycle configurations have been proposed and studied for nuclear applications; the most promising candidates include recompression, precompression, and partial cooling cycles. Three factors are important for incorporating s-CO2 into CSP plants: superior performance vs. steam Rankine cycles, ability to integrate thermal energy storage, and dry-cooling. This paper will present air-cooled s-CO2 cycle configurations specifically selected for a CSP application. The systems will consider 10-MW power blocks that are tower-mounted with an s-CO2 HTF and 100-MW, ground-mounted s-CO2 power blocks designed to receive molten salt HTF from a power tower.


Author(s):  
K. Nithyanandam ◽  
R. Pitchumani

Integrating a thermal energy storage (TES) in a concentrating solar power (CSP) plant allows for continuous operation even during times when solar radiation is not available, thus providing a reliable output to the grid. In the present study, the cost and performance models of an encapsulated phase change material thermocline storage system are integrated with a CSP power tower system model to investigate its dynamic performance. The influence of design parameters of the storage system is studied for different solar multiples of the plant to establish design envelopes that satisfy the U.S. Department of Energy SunShot Initiative requirements, which include a round-trip exergetic efficiency greater than 95% and storage cost less than $15/kWht for a minimum discharge period of 6 hours. From the design windows, optimum designs of the storage system based on minimum LCOE, maximum exergetic efficiency, and maximum capacity factor are reported and compared with the results of two-tank molten salt storage system. Overall, this study presents the first effort to construct a latent thermal energy storage (LTES)-integrated CSP plant model, that can help decision makers in assessing the impact, cost and performance of a latent thermocline energy storage system on power generation from molten salt power tower CSP plant.


Author(s):  
Karthik Nithyanandam ◽  
Ranga Pitchumani

Latent thermal energy storage (LTES) system offers high energy storage density and nearly isothermal operation for concentrating solar power generation. However, the low thermal conductivity possessed by the phase change material (PCM) used in LTES system limits the heat transfer rates. Utilizing thermosyphons to charge or discharge a LTES system offers a promising engineering solution to compensate for the low thermal conductivity of the PCM. The present work numerically investigates the enhancement in the thermal performance of charging and discharging process of LTES system by embedding thermosyphons. A transient, computational analysis of the LTES system with embedded thermosyphons is performed for both charging and discharging cycles. The influence of the design configuration of the system and the arrangement of the thermosyphons on the charge and discharge performance of the LTES installed in a concentrating solar power plant (CSP) is analyzed to identify configurations that lead to improved effectiveness.


Sign in / Sign up

Export Citation Format

Share Document