Experimental results of a small-scale organic Rankine cycle: Steady state identification and application to off-design model validation

2018 ◽  
Vol 226 ◽  
pp. 82-106 ◽  
Author(s):  
Steven Lecompte ◽  
Sergei Gusev ◽  
Bruno Vanslambrouck ◽  
Michel De Paepe
Heliyon ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. e07947
Author(s):  
Geanette Polanco Piñerez ◽  
Guillermo Valencia Ochoa ◽  
Jorge Duarte-Forero

Energy ◽  
2019 ◽  
Vol 167 ◽  
pp. 619-640 ◽  
Author(s):  
Roberto Pili ◽  
Alessandro Romagnoli ◽  
Manuel Jiménez-Arreola ◽  
Hartmut Spliethoff ◽  
Christoph Wieland

Author(s):  
Jian Song ◽  
Chun-wei Gu

Energy shortage and environmental deterioration are two crucial issues that the developing world has to face. In order to solve these problems, conversion of low grade energy is attracting broad attention. Among all of the existing technologies, Organic Rankine Cycle (ORC) has been proven to be one of the most effective methods for the utilization of low grade heat sources. Turbine is a key component in ORC system and it plays an important role in system performance. Traditional turbine expanders, the axial flow turbine and the radial inflow turbine are typically selected in large scale ORC systems. However, in small and micro scale systems, traditional turbine expanders are not suitable due to large flow loss and high rotation speed. In this case, Tesla turbine allows a low-cost and reliable design for the organic expander that could be an attractive option for small scale ORC systems. A 1-D model of Tesla turbine is presented in this paper, which mainly focuses on the flow characteristics and the momentum transfer. This study improves the 1-D model, taking the nozzle limit expansion ratio into consideration, which is related to the installation angle of the nozzle and the specific heat ratio of the working fluid. The improved model is used to analyze Tesla turbine performance and predict turbine efficiency. Thermodynamic analysis is conducted for a small scale ORC system. The simulation results reveal that the ORC system can generate a considerable net power output. Therefore, Tesla turbine can be regarded as a potential choice to be applied in small scale ORC systems.


2017 ◽  
Vol 189 ◽  
pp. 416-432 ◽  
Author(s):  
D. Ziviani ◽  
S. Gusev ◽  
S. Lecompte ◽  
E.A. Groll ◽  
J.E. Braun ◽  
...  

2018 ◽  
Vol 140 ◽  
pp. 235-244 ◽  
Author(s):  
Andreas P. Weiß ◽  
Tobias Popp ◽  
Jonas Müller ◽  
Josef Hauer ◽  
Dieter Brüggemann ◽  
...  

Author(s):  
Fabrizio Reale ◽  
Vincenzo Iannotta ◽  
Raffaele Tuccillo

The primary need of reducing pollutant and greenhouse gas emissions has led to new energy scenarios. The interest of research community is mainly focused on the development of energy systems based on renewable resources and energy storage systems and smart energy grids. In the latter case small scale energy systems can become of interest as nodes of distributed energy systems. In this context micro gas turbines (MGT) can play a key role thanks to their flexibility and a strategy to increase their overall efficiency is to integrate gas turbines with a bottoming cycle. In this paper the authors analyze the possibility to integrate a MGT with a super critical CO2 Brayton cycle turbine (sCO2 GT) as a bottoming cycle (BC). A 0D thermodynamic analysis is used to highlight opportunities and critical aspects also by a comparison with another integrated energy system in which the waste heat recovery (WHR) is obtained by the adoption of an organic Rankine cycle (ORC). While ORC is widely used in case of middle and low temperature of the heat source, s-CO2 BC is a new method in this field of application. One of the aim of the analysis is to verify if this choice can be comparable with ORC for this operative range, with a medium-low value of exhaust gases and very small power values. The studied MGT is a Turbec T100P.


Author(s):  
Pietro Bartocci ◽  
Gianni Bidini ◽  
Paolo Laranci ◽  
Mauro Zampilli ◽  
Michele D'Amico ◽  
...  

Biomass CHP plants represent a viable option to produce distributed energy in a sustainable way when the overall environmental benefit is appraised on the whole life cycle. CHP plants for bioenergy conversion may consist of a gasification (IGC – Integrated Gasification Cycle) or pyrolysis (IPRP – Integrated Pyrolysis Regenerated Plant) pre-treatment unit, producing a syngas that feeds an internal combustion engine or a gas turbine. The external combustion mode is also an option, where exhaust gases from biomass combustion provide heat to either a traditional steam cycle, an ORC (Organic Rankine Cycle) or an EFGT (Externally Fired Gas Turbine). This paper focuses specifically on turbines based technologies and provides a LCA comparison of 4 main technologies suitable for the small scale, namely: EFMGT, ORC, IGC and IPRP. The comparison is carried out considering 3 different biomasses, namely a Short Rotation Forestry, an agricultural residue and an agro industrial residue at 2 different scales: micro scale (100 kw) and small scale (1 MW), being higher scales barely sustainable on the life cycle. From data derived from the Literature or experimental campaign (tests at the IPRP and gasification facilities at the University Perugia), LCA analysis were carried out and the different scenarios were compared based on two impact categories: global warming and human health. Input and output of the derived LCI are referred to the functional unit of 1 kWh electric for upstream, core and downstream processes. Results show the contribution of main processes and are discussed comparing scale, technology and feedstock.


Sign in / Sign up

Export Citation Format

Share Document