1-D Model Analysis of Tesla Turbine for Small Scale Organic Rankine Cycle (ORC) System

Author(s):  
Jian Song ◽  
Chun-wei Gu

Energy shortage and environmental deterioration are two crucial issues that the developing world has to face. In order to solve these problems, conversion of low grade energy is attracting broad attention. Among all of the existing technologies, Organic Rankine Cycle (ORC) has been proven to be one of the most effective methods for the utilization of low grade heat sources. Turbine is a key component in ORC system and it plays an important role in system performance. Traditional turbine expanders, the axial flow turbine and the radial inflow turbine are typically selected in large scale ORC systems. However, in small and micro scale systems, traditional turbine expanders are not suitable due to large flow loss and high rotation speed. In this case, Tesla turbine allows a low-cost and reliable design for the organic expander that could be an attractive option for small scale ORC systems. A 1-D model of Tesla turbine is presented in this paper, which mainly focuses on the flow characteristics and the momentum transfer. This study improves the 1-D model, taking the nozzle limit expansion ratio into consideration, which is related to the installation angle of the nozzle and the specific heat ratio of the working fluid. The improved model is used to analyze Tesla turbine performance and predict turbine efficiency. Thermodynamic analysis is conducted for a small scale ORC system. The simulation results reveal that the ORC system can generate a considerable net power output. Therefore, Tesla turbine can be regarded as a potential choice to be applied in small scale ORC systems.

Author(s):  
P. Kohlenbach ◽  
S. McEvoy ◽  
W. Stein ◽  
A. Burton ◽  
K. Wong ◽  
...  

This paper presents component performance results of a new parabolic trough collector array driving an organic Rankine cycle (ORC) power generation system. The system has been installed in the National Solar Energy Centre at CSIRO Energy Technology in Newcastle, NSW, Australia. It consists of four rows of 18 parabolic mirrors each in a 2×2 matrix with a total aperture area of approximately 132m2. The absorber tube is a laterally aligned, 40mm copper tube coated with a semi-selective paint and enclosed in a 50mm non-evacuated glass tube to reduce convection losses. The mirror modules, which are light-weight and robust, are made from thin low iron back silvered glass bonded to a sheet steel substrate. They are supported by a box truss on semi circular hoops running on rollers for single axis tracking. The mirror design has been chosen to allow low-cost manufacturing as well as simple commissioning and operation. The ORC unit is a FP6 unit sourced from Freepower Ltd. with a net power output of 6kWel at 180°C inlet temperature and a total heat input of 70 kWth. It uses a two-stage expansion process with hydrofluoroether as the working fluid. A wet cooling tower is used to dissipate the reject heat from the ORC. The two key components of the envisioned system are the trough reflector/receiver and the ORC unit. The optical performance of the mirror elements was investigated with regard to the flux mapping onto the receiver tube. The ORC unit has been tested separately using an electrical oil heater as the heat source. This paper presents results for irradiation capture and intensity over the receiver width of a single trough mirror module. The complete system including trough collectors and ORC has not been in transient operation yet, thus experimental steady-state results of the ORC unit are presented.


Author(s):  
Amrita Sengupta ◽  
Prashant Kumar ◽  
Pardeep Garg ◽  
Nirmal Hui ◽  
Matthew S. Orosz ◽  
...  

Recent studies on small-scale power generation with the organic Rankine cycle suggest superior performance of positive displacement type of expanders compared to turbines. Scroll expanders in particular achieve high isentropic efficiencies due to lower leakage and frictional losses. Performance of scroll machines may be enhanced by the use of non-circular involute curves in place of the circular involutes resulting non-uniform wall thickness. In this paper, a detailed moment analysis is performed for such an expander having volumetric expansion ratio of 5 using thermodynamic models proposed earlier by one of the present authors. The working fluid considered in the power cycle is R-245fa with scroll inlet temperature of 125 °C for a gross power output of ∼3.5 kW. The model developed in this paper is verified with an air scroll compressor available in the literature and then applied to an expander. Prediction of small variation of moment with scroll motion recommends use of scroll expander without a flywheel over other positive displacement type of expanders, e.g. reciprocating, where a flywheel is an essential component.


Author(s):  
Maoqing Li ◽  
Jiangfeng Wang ◽  
Lin Gao ◽  
Xiaoqiang Niu ◽  
Yiping Dai

Due to environmental constraints, the Organic Rankine Cycle (ORC) is widely used to generate electricity from low grade heat sources. In ORC processes, the working fluid is an organic substance, which has a better thermodynamic performance than water for low grade heat recovery. The design of the turbine which is the key component in the ORC system strongly depends on the operating conditions and on the scale of the facility. This paper presents an experimental study on a prototype of an axial-flow turbine integrated into a regenerative ORC system with R123 as working fluid. The power output is 10kW scale, and the single-stage turbine is selected. The turbine is specially designed and manufactured, and a generator is connected to the turbine directly. In the experiment, the turbine is tested under different inlet pressure conditions (0.6–1.5MPa), different inlet temperature conditions (80–150°C) and different flow rate conditions. The experimental data such as the pressures, temperatures of the turbine inlet and outlet, flow rate, rotational speed, and electrical power generation are analyzed to find their inner relationships. During the test, the turbine rotational speed could reach more than 3010 r/min, while the design rotational speed is 3000 r/min. The isentropic efficiency of the turbine could reach 53%. The maximum electrical power generated by the turbine-generator is 6.57KW. From the test data the peak value of the temperature difference between the inlet and the outlet of the turbine is 53 °C, and the expansion ratio reaches about 11. The computational fluid dynamics (CFD) solvers is also used to analyze the performance of the turbine. The distributions of the pressure, Mach number, and static entropy in the turbine flow passage component are examined and the reasons are also obtained. This study reveals the relationships between the performance of the axial-flow turbine and its inlet and outlet vapor conditions. The experiment results and the CFD results lay a foundation for using this type turbine in the ORC systems which product electrical power from a few KW to MW.


Author(s):  
Gerald Müller ◽  
Chun Ho Chan ◽  
Alexander Gibby ◽  
Muhammad Zubair Nazir ◽  
James Paterson ◽  
...  

The cost-effective utilisation of low-grade thermal energy with temperatures below 150 ℃ for electricity generation still constitutes an engineering challenge. Existing technology, e.g. the organic Rankine cycle machines, are complex and only economical for larger power outputs. At Southampton University, the steam condensation cycle for a working temperature of 100 ℃ was analysed theoretically. The cycle uses water as working fluid, which has the advantages of being cheap, readily available, non-toxic, non-inflammable and non-corrosive, and works at and below atmospheric pressure, so that leakage and sealing are not problematic. Steam expansion will increase the theoretical efficiency of the cycle from 6.4% (no expansion) to 17.8% (expansion ratio 1:8). In this article, the theoretical development of the cycle is presented. A 40 Watt experimental engine was built and tested. Efficiencies ranged from 0.02 (no expansion) to 0.055 (expansion ratio 1:4). The difference between theoretical and experimental efficiencies was attributed to significant pressure loss in valves, and to difficulties with heat rejection. It was concluded that the condensing engine has potential for further development.


Author(s):  
Laihe Zhuang ◽  
Guoqiang Xu ◽  
Jie Wen ◽  
Bensi Dong

Organic Rankine cycle (ORC) has gained an increasing worldwide attention due to its high efficiency in converting low-grade thermal energy into electricity. The expander is the most critical component in the ORC system. Among the influential factors that define the performance of the expander, the velocity coefficient of the nozzle is crucial. This work numerically investigates the effects of the nozzle height, length, surface roughness, outlet geometric angle, and expansion ratio, on the velocity coefficient of the nozzle in the ORC turbine with hexamethyldisiloxane (MM) as working fluid. In the 3-D viscous numerical analysis, the shear stress transports k-ω turbulence model is employed and the numerical method is verified by the experimental data of the nozzle with pressured air based on hotwire technology. The numerical results show that the velocity coefficient is almost independent of expansion ratio compared to other factors due to the relatively small flow boundary layer and high Reynolds number. Since the existing correlations for the gas nozzle cannot well predict the velocity coefficient of the organic nozzle, an empirical equation is proposed according to the numerical results with the maximum deviation of 3.0%.


2009 ◽  
Vol 131 (1) ◽  
Author(s):  
James A. Mathias ◽  
Jon R. Johnston ◽  
Jiming Cao ◽  
Douglas K. Priedeman ◽  
Richard N. Christensen

This paper presents the experimental testing of relatively cost-effective expanders in an organic Rankine cycle (ORC) to produce power from low-grade energy. Gerotor and scroll expanders were the two types of expanders tested to determine their applicability in producing power from low-grade energy. The results of the experimental testing showed that both types of expanders were good candidates to be used in an ORC. The gerotor and scroll expanders tested produced 2.07 kW and 2.96 kW, and had isentropic efficiencies of 0.85 and 0.83, respectively. Also the paper presents results of an analytical model produced that predicted improved cycle efficiency with certain changes. One change was the flow rate of the working fluid in the cycle was properly matched with the inlet pocket volume and rotational speed of the expander. Also, the volumetric expansion ratio of the expander was matched to the specific volume ratio of the working fluid (R-123) across the expander. The model incorporated the efficiencies of the expanders and pump obtained during experimental testing, and combined two expanders in series to match the specific volume ratio of the working fluid. The model determined the power produced by the expanders, and subtracted the power required by the working fluid pump and the condenser fan. From that, the model calculated the net power produced to be 6271 W and the overall energy efficiency of the cycle to be 7.7%. When the ORC was simulated to be integrated with the exhaust of a stationary engine, the exergetic efficiency, exergy destroyed, and reduction in diesel fuel while still producing the same amount of power during 2500 h of operation were 22.1%, 22,169 W, and 4,012 L (1060 U.S. gal), respectively. Consequently, the model presents a very realistic design based on results from experimental testing to cost-effectively use low-grade energy.


Energy ◽  
2020 ◽  
Vol 213 ◽  
pp. 118898
Author(s):  
Bernardo Peris ◽  
Joaquín Navarro-Esbrí ◽  
Carlos Mateu-Royo ◽  
Adrián Mota-Babiloni ◽  
Francisco Molés ◽  
...  

Author(s):  
Matthias Mitterhofer ◽  
Matthew Orosz

Small scale solar thermal systems are increasingly investigated in the context of decentralized energy supply, due to favorable costs of thermal energy storage (TES) in comparison with battery storage for otherwise economical PV generation. The present study provides the computational framework and results of a one year simulation of a low-cost pilot 3kWel micro-Concentrated Solar Power (micro-CSP) plant with TES. The modeling approach is based on a dynamic representation of the solar thermal loop and a steady state model of the Organic Rankine Cycle (ORC), and is validated to experimental data from a test site (Eckerd College, St. Petersburg, Florida). The simulation results predict an annual net electricity generation of 4.08 MWh/a. Based on the simulation, optimization studies focusing on the Organic Rankine Cycle (ORC) converter of the system are presented, including a control strategy allowing for a variable pinch point in the condenser that offers an annual improvement of 14.0% in comparison to a constant condensation pinch point. Absolute electricity output is increased to 4.65 MWh/a. Improvements are due to better matching to expander performance and lower condenser fan power because of higher pinch points. A method, incorporating this control strategy, is developed to economically optimize the ORC components. The process allows for optimization of the ORC subsystem in an arbitrary environment, e.g. as part of a micro-grid to minimize Levelized electricity costs (LEC). The air-cooled condenser is identified as the driving component for the ORC optimization as its influence on overall costs and performance is of major significance. Application of the optimization process to various locations in Africa illustrates economic benefits of the system in comparison to diesel generation.


Author(s):  
Mauro Reini

In recent years, a big effort has been made to improve microturbines thermal efficiency, in order to approach 40%. Two main options may be considered: i) a wide usage of advanced materials for hot ends components, like impeller and recuperator; ii) implementing more complicated thermodynamic cycle, like combined cycle. In the frame of the second option, the paper deals with the hypothesis of bottoming a low pressure ratio, recuperated gas cycle, typically realized in actual microturbines, with an Organic Rankine Cycle (ORC). The object is to evaluate the expected nominal performance parameters of the integrated-combined cycle cogeneration system, taking account of different options for working fluid, vapor pressure and component’s performance parameters. Both options of recuperated and not recuperated bottom cycles are discussed, in relation with ORC working fluid nature and possible stack temperature for microturbine exhaust gases. Finally, some preliminary consideration about the arrangement of the combined cycle unit, and the effects of possible future progress of gas cycle microturbines are presented.


Sign in / Sign up

Export Citation Format

Share Document