scholarly journals Aquifer Thermal Energy Storage (ATES) smart grids: Large-scale seasonal energy storage as a distributed energy management solution

2019 ◽  
Vol 242 ◽  
pp. 624-639 ◽  
Author(s):  
Vahab Rostampour ◽  
Marc Jaxa-Rozen ◽  
Martin Bloemendal ◽  
Jan Kwakkel ◽  
Tamás Keviczky
2016 ◽  
Vol 97 ◽  
pp. 59-66 ◽  
Author(s):  
Vahab Rostampour ◽  
Marc Jaxa-Rozen ◽  
Martin Bloemendal ◽  
Tamás Keviczky

1988 ◽  
Vol 20 (3) ◽  
pp. 75-86 ◽  
Author(s):  
H. Iihola ◽  
T. Ala-Peijari ◽  
H. Seppänen

The rapid changes and crises in the field of energy during the 1970s and 1980s have forced us to examine the use of energy more critically and to look for new ideas. Seasonal aquifer thermal energy storage (T < 100°C) on a large scale is one of the grey areas which have not yet been extensively explored. However, projects are currently underway in a dozen countries. In Finland there have been three demonstration projects from 1974 to 1987. International co-operation under the auspices of the International Energy Agency, Annex VI, ‘Environmental and Chemical Aspects of Thermal Energy Storage in Aquifers and Research and Development of Water Treatment Methods' started in 1987. The research being undertaken in 8 countries includes several elements fundamental to hydrochemistry and biochemistry.


2018 ◽  
Vol 149 ◽  
pp. 585-594 ◽  
Author(s):  
Thomas Schmidt ◽  
Thomas Pauschinger ◽  
Per Alex Sørensen ◽  
Aart Snijders ◽  
Reda Djebbar ◽  
...  

2015 ◽  
Vol 137 ◽  
pp. 322-337 ◽  
Author(s):  
Wijbrand Sommer ◽  
Johan Valstar ◽  
Ingo Leusbrock ◽  
Tim Grotenhuis ◽  
Huub Rijnaarts

1985 ◽  
Vol 107 (4) ◽  
pp. 322-325 ◽  
Author(s):  
J. G. Melville ◽  
F. J. Molz ◽  
O. Gu¨ven

Large scale field experiments in aquifer thermal energy storage (ATES) were conducted between September, 1976, and November, 1982. Volumes of 7,700 m3, 54,800 m3, 58,000 m3, 24,400 m3, 58,000 m3, and 58,680 m3 were injected at average temperatures of 35.0° C, 55.0° C, 55.0° C, 58.5° C, 81.0° C, and 79.0° C, respectively, in an aquifer with ambient temperature of 20.0° C. Based on recovery volumes equal to the injection volumes, the respective energy recovery efficiencies were 69, 65, 74, 56, 45, and 42 percent. Primary factors in reduction of efficiency were aquifer nonhomogeneity and especially convection due to buoyancy of the injection volumes.


2013 ◽  
Vol 4 (2) ◽  
pp. 77-89 ◽  
Author(s):  
Matthijs Bonte ◽  
Boris M. Van Breukelen ◽  
Pieter J. Stuyfzand

Aquifer thermal energy storage (ATES) uses groundwater to store energy for heating or cooling purposes in the built environment. This paper presents field and laboratory results aiming to elucidate the effects that ATES operation may have on chemical groundwater quality. Field data from an ATES site in the south of the Netherlands show that ATES results in chemical quality perturbations due to homogenisation of the initially present vertical water quality gradient. We tested this hypothesis by numerical modelling of groundwater flow and coupled SO4 transport during extraction and injection of groundwater by the ATES system. The modelling results confirm that extracting groundwater from an aquifer with a natural quality stratification, mixing this water in the ATES system, and subsequent injection in the second ATES well can adequately describe the observation data. This mixing effect masks any potential temperature effects in typical low temperature ATES systems (<25 °C) which was the reason to complement the field investigations with laboratory experiments focusing on temperature effects. The laboratory experiments indicated that temperature effects until 25 °C are limited; most interestingly was an increase in arsenic concentration. At 60 °C, carbonate precipitation, mobilisation of dissolved oxygen concentration, K and Li, and desorption of trace metals like As can occur.


Sign in / Sign up

Export Citation Format

Share Document