Prospective of development of large-scale tidal current turbine array: An example numerical investigation of Zhejiang, China

2020 ◽  
Vol 264 ◽  
pp. 114621 ◽  
Author(s):  
Guizhong Deng ◽  
Zhaoru Zhang ◽  
Ye Li ◽  
Hailong Liu ◽  
Wentao Xu ◽  
...  
Author(s):  
Chul-hee Jo ◽  
Kang-hee Lee ◽  
Yu-ho Rho ◽  
Do-youb Kim

Recently, large scale tidal devices have been deployed with a maximum rotor diameter of 20m. These devices impose significant loading on supporting structures. The supporting structure for tidal current power device is under dynamic loadings caused by environmental loadings. Not only the environmental loadings but also the rotating turbine creates dynamic loading as well. The rotating turbine is obviously and continuously deformed for various incoming flow velocities. In many cases, a pile fixed foundation is used to secure the structure. In this study, the commonly used pile fixed type is applied with three blade turbine. A numerical analysis of the hydro-forces from a rotating tidal current turbine to a tower was conducted to determine the deformation distribution along the pile tower. The FSI analysis technique is used in the study.


Author(s):  
Jun Leng ◽  
Ye Li

In recent years, tidal current energy has gained wide attention for its abundant resource and environmentally friendly production. This study focuses on analyzing dynamic behavior of a three-bladed vertical axis tidal current turbine. The multibody dynamics code MBDyn is used in the numerical simulation. It performs the integrated simulation and analysis of nonlinear mechanical, aeroelastic, hydraulic and control problems by numerical integration. In this study, tidal current turbine is idealized as an assembly of flexible beams including axis of rotation, arms and blades. We firstly conduct a modal analysis on the tidal current turbine and validate the model with the results obtained by ANSYS. The natural frequencies of blades with different size parameters are compared and the corresponding mode shapes are presented. Next, a parametric study was performed to investigate the effect of internal force on the dynamic response. It is concluded that the proposed method is accurate and efficient for structural analysis of tidal current turbine and this flexible multibody model can be used in the fluid-structure-interaction analysis in the future.


2015 ◽  
pp. 601-612
Author(s):  
B Morandi ◽  
F Di Felice ◽  
M Costanzo ◽  
G Romano ◽  
D Dhomé ◽  
...  

2018 ◽  
Vol 198 ◽  
pp. 04004
Author(s):  
P. T. Ghazvinei ◽  
H.H. Darvishi ◽  
A. Bhatia

Marine current power is a significant energy resource which is yet to be exploited for efficient energy production. Malaysia, being a tropical country is rich in renewable sources and tidal power is one of them. In Malaysia, Straits of Malacca is a potential site to establish a tidal current turbine. In the current study, the potential sites of the Straits of Malacca are discussed. A detailed review about the generator suitable for the Straits of Malacca with the associated challenges has also been discussed. Furthermore, the suitable solution for such challenges is proposed. The role of simulation in choosing an appropriate site and generator has also been reviewed. The focus of the study is to propose a generator suitable for the flow characteristics of the Straits of Malacca.


2020 ◽  
Vol 210 ◽  
pp. 107320 ◽  
Author(s):  
Wang Hua-Ming ◽  
Qu Xiao-Kun ◽  
Chen Lin ◽  
Tu Lu-Qiong ◽  
Wu Qiao-Rui

Sign in / Sign up

Export Citation Format

Share Document