Prospects for cost-competitive integrated gasification fuel cell systems

2021 ◽  
Vol 290 ◽  
pp. 116753
Author(s):  
Surinder P. Singh ◽  
Brandon Ohara ◽  
Anthony Y. Ku
Author(s):  
Ju¨rgen Karl ◽  
Nadine Frank ◽  
Sotiris Karellas ◽  
Mathilde Saule ◽  
Ulrich Hohenwarter

Conversion of biomass in syngas by means of indirect gasification offers the option to improve the economic situation of any fuel cell systems due to lower costs for feedstock and higher power revenues in many European countries. The coupling of an indirect gasification of biomass and residues with highly efficient SOFC systems is therefore a promising technology for reaching economic feasibility of small decentralized combined heat and power production (CHP). The predicted efficiency of common high temperature fuel cell systems with integrated gasification of solid feedstock is usually significantly lower than the efficiency of fuel cells operated with hydrogen or methane. Additional system components like the gasifier, as well as the gas cleaning reduce this efficiency. Hence common fuel cell systems with integrated gasification of biomass will hardly reach electrical efficiencies above 30 percent. An extraordinary efficient combination is achieved in case that the fuel cells waste heat is used in an indirect gasification system. A simple combination of a SOFC and an allothermal gasifier enables then electrical efficiencies above 50%. But this systems requires an innovative cooling concept for the fuel cell stack. Another significant question is the influence of impurities on the fuel cells degradation. The European Research Project ‘BioCellus’ focuses on both questions — the influence of the biogenious syngas on the fuel cells and an innovative cooling concept based on liquid metal heat pipes. First experiments showed that in particular higher hydrocarbons — the so-called tars — do not have an significant influence on the performance of SOFC membranes. The innovative concept of the TopCycle comprises to heat an indirect gasifier with the exhaust heat of the fuel cell by means of liquid metal heat pipes. Internal cooling of the stack and the recirculation of waste heat increases the system efficiency significantly. This concept promises electrical efficiencies of above 50 percent even for small-scale systems without any combined processes.


2019 ◽  
Vol 30 (1) ◽  
pp. 157-165 ◽  
Author(s):  
Hossein Ghezel-Ayagh ◽  
Richard Way ◽  
Peng Huang ◽  
Jim Walzak ◽  
Steven Jolly ◽  
...  

Author(s):  
Jurgen Karl ◽  
Nadine Frank ◽  
Sotirios Karellas ◽  
Mathilde Saule ◽  
Ulrich Hohenwarter

Conversion of biomass in syngas by means of indirect gasification offers the option to improve the economic situation of any fuel cell system due to lower costs for feedstock and higher power revenues in many European countries. The coupling of an indirect gasification of biomass and residues with highly efficient solid oxide fuel cell (SOFC) systems is therefore a promising technology for reaching economic feasibility of small decentralized combined heat and power production (CHP).The predicted efficiency of common high temperature fuel cell systems with integrated gasification of solid feedstock is usually significantly lower than the efficiency of fuel cells operated with hydrogen or methane. Additional system components like the gasifier as well as the gas cleaning reduce this efficiency. Hence common fuel cell systems with integrated gasification of biomass will hardly reach electrical efficiencies above 30%. An extraordinary efficient combination is achieved in case that the fuel cells waste heat is used in an indirect gasification system. A simple combination of a SOFC and an allothermal gasifier enables then electrical efficiencies above 50%. However, this system requires an innovative cooling concept for the fuel cell stack. Another significant question is the influence of impurities on the fuel cell degradation. The European Research Project “BioCellus” focuses on both questions—the influence of the biogenous syngas on the fuel cells and an innovative cooling concept based on liquid metal heat pipes. First experiments showed that, in particular, higher hydrocarbons—the so-called tars—do not have any significant influence on the performance of SOFC membranes. The innovative concept of the TopCycle comprises to heat an indirect gasifier with the exhaust heat of the fuel cell by means of liquid metal heat-pipes. Internal cooling of the stack and the recirculation of waste heat increases the system efficiency significantly. This concept promises electrical efficiencies of above 50% even for small-scale systems without any combined processes.


2011 ◽  
Vol 35 (1) ◽  
pp. 354-362 ◽  
Author(s):  
F.P. Nagel ◽  
S. Ghosh ◽  
C. Pitta ◽  
T.J. Schildhauer ◽  
S. Biollaz

2009 ◽  
Vol 34 (16) ◽  
pp. 6826-6844 ◽  
Author(s):  
Florian P. Nagel ◽  
Tilman J. Schildhauer ◽  
Nathalie McCaughey ◽  
Serge M.A. Biollaz

Sign in / Sign up

Export Citation Format

Share Document