Combined heat and power as a platform for clean energy systems

2021 ◽  
Vol 304 ◽  
pp. 117686
Author(s):  
Marilyn A. Brown ◽  
Valentina Sanmiguel Herrera
2018 ◽  
Vol 10 (7) ◽  
pp. 2485 ◽  
Author(s):  
Rafaela Hillerbrand

This paper reflects on criticisms raised in the literature on the UN’s Sustainable Development Goals (SDGs). These have been criticized as creating a dichotomy between the environment and human beings that fails to address the multiple interconnections between the two. This paper focuses on SDG7—“affordable and clean energy”—and suggests that there is in fact a tripartite distinction between the environment, human beings and technology underlying the SDGs. This distinction, we argue, does not adequately represent the multiple interconnections among the various SDGs and hampers their implementation. We contend that the formulation of SDG7 produces a circular definition of sustainability, a difficulty that is currently resolved at the level of the targets and indicators in a way that regards energy technologies primarily as artifacts. By contrast, the literature on ethical aspects of energy systems largely agrees that energy is a paradigmatic example of a sociotechnical system. We contend that, by not considering this sociotechnical nature, the SDGs run the risk of implicitly defending a certain variant of technological optimism and determinism. We argue that this is disadvantageous to the environment, human well-being and technological development. In line with recent critical evaluations of the SDGs, we argue that these (and other) shortcomings can be addressed by better connecting the SDGs to human well-being. Building on recent literature that expands the scope of the Capability Approach as an alternative measure of well-being so as to include considerations of sustainability, we articulate a framework that allows us to elucidate this connection and thus to take advantage of synergies between human well-being and the environment. On the basis of the Capability Approach, we argue that equating sustainable energy with renewable energy—as is done in the transition from SDG7’s goal to its targets—is indefensible because, as part of the overarching energy systems, energy technologies cannot be classified as simply right or wrong. Rather, the indicators and targets within a framework focused on sustainability need to be (more) context sensitive, meaning that, among other things, they may vary by country and with the available technology.


Author(s):  
Andrei Mircea Bolboaca

Covering the energy demands under environmental protection and satisfying economic and social restrictions, together with decreasing polluting emissions, are impetuous necessities, considering that over half of the pollutant emissions released in the environment are the effect of the processes of electricity and heat production from the classic thermoelectric powerplant. Increasing energy efficiency and intensifying the use of alternative resources are key objectives of global policy. In this context, a range of new energy technologies has been developed, based on alternative energy conversion systems, which have recently been used more and more often for the simultaneous production of electricity and heat. An intensification of the use of combined energy production correlated with the tendency towards the use of clean energy resources can be helpful in achieving the global objectives of increasing fuel diversity and ensuring energy demand. The chapter aims at describing the fuel cell technology, in particular those of the SOFC type, used in the CHP for stationary applications.


Proceedings ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 20
Author(s):  
Ala-Juusela ◽  
Zupančič ◽  
Gubina ◽  
Tuerk

The Clean Energy Package foresees a strong roll out of decentralized energy systems with renewable generation and storage. The STORY project has designed and tested six different storage solutions for a decentralized renewable energy system. In the workshop organised in the frame of SP19 conference, we highlighted some of the economic, social and technical barriers to storage in Europe and how these have been addressed.


Author(s):  
Robin J. McDaniel

Small Modular Reactor (SMR) technologies have been recently deemed by the DOE as clean energy, a low carbon-dioxide emitting “alternative energy” source. Recent UN Sustainability Goals and Global Climate Talks to reduce the anthropomorphic Carbon-Dioxide atmospheric concentrations signal a renewed interest and need for nuclear power. The objective of this paper is to present an improved approach to the evaluation of “Hybrid Nuclear Energy Systems”. A hybrid energy system is defined as an energy system that utilizes two or more sources of energy to be used in single or multiple applications. Traditional single sourced energy or power systems require the amount of energy creation and the production of usable power to be carefully balanced. With the introduction of multiple energy sources, loads, and energy capacitors, the design, simulation, and operation of such hybrid systems requires a new approach to analysis and control. This paper introduces three examples of “Hybrid Nuclear Energy Systems”, for large scale power, industrial heat, and electricity generation. The system component independence, reliability, availability, and dynamic control aspects, coupled with component operational decisions presents a new way to optimize energy production and availability. Additional novel hybrid hydro-nuclear systems, concentrated solar-nuclear power desalination systems, and nuclear-insitu petroleum extraction systems are compared. The design aspects of such hybrid systems suitable for process heat, electricity generation, and/or desalination applications are discussed. After a multiple-year research study of past hybrid reactor designs and recent system proposals, the following design evaluation approach is the result of analysis of the best concepts discovered. This review of existing literature has summerized that postulated benefits of Hybrid Nuclear Sytems are; reduced greenhouse gas emissions, increased energy conversion efficiency, high reliability of electricity supply and consistent power quality, reduced fossil fuel dependence, less fresh water consumption, conversion of local coal or shale into higher value fuels, while lowering the risks and costs. As these proposed hybrid systems are interdisciplinary in nature, they will require a new multidisciplinary approach to systems evaluation.


2019 ◽  
Vol 40 (4) ◽  
Author(s):  
Olivier Bahn ◽  
Kelly de Bruin ◽  
Camille Fertel
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document