scholarly journals Measuring the long run technical efficiency of offshore wind farms

2022 ◽  
Vol 308 ◽  
pp. 118218
Author(s):  
Giacomo Benini ◽  
Gilles Cattani
2018 ◽  
Vol 596 ◽  
pp. 213-232 ◽  
Author(s):  
MJ Brandt ◽  
AC Dragon ◽  
A Diederichs ◽  
MA Bellmann ◽  
V Wahl ◽  
...  

2009 ◽  
Vol 1 (07) ◽  
pp. 809-813
Author(s):  
M. Martínez ◽  
A. Pulido ◽  
J. Romero ◽  
N. Angulo ◽  
F. Díaz ◽  
...  

Hydrobiologia ◽  
2021 ◽  
Author(s):  
Ninon Mavraki ◽  
Steven Degraer ◽  
Jan Vanaverbeke

AbstractOffshore wind farms (OWFs) act as artificial reefs, attracting high abundances of fish, which could potentially increase their local production. This study investigates the feeding ecology of fish species that abundantly occur at artificial habitats, such as OWFs, by examining the short- and the long-term dietary composition of five species: the benthopelagic Gadus morhua and Trisopterus luscus, the pelagic Scomber scombrus and Trachurus trachurus, and the benthic Myoxocephalus scorpioides. We conducted combined stomach content and stable isotope analyses to examine the short- and the time-integrated dietary composition, respectively. Our results indicated that benthopelagic and benthic species utilize artificial reefs, such as OWFs, as feeding grounds for a prolonged period, since both analyses indicated that they exploit fouling organisms occurring exclusively on artificial hard substrates. Trachurus trachurus only occasionally uses artificial reefs as oases of highly abundant resources. Scomber scombrus does not feed on fouling fauna and therefore its augmented presence in OWFs is probably related to reasons other than the enhanced food availability. The long-termed feeding preferences of benthic and benthopelagic species contribute to the hypothesis that the artificial reefs of OWFs could potentially increase the fish production in the area. However, this was not supported for the pelagic species.


2020 ◽  
Vol 32 (1) ◽  
Author(s):  
Anna Maria Bell ◽  
Marcus von der Au ◽  
Julia Regnery ◽  
Matthias Schmid ◽  
Björn Meermann ◽  
...  

Abstract Background Cathodic protection by sacrificial anodes composed of aluminum-zinc-indium alloys is often applied to protect offshore support structures of wind turbines from corrosion. Given the considerable growth of renewable energies and thus offshore wind farms in Germany over the last decade, increasing levels of aluminum, indium and zinc are released to the marine environment. Although these metals are ecotoxicologically well-studied, data regarding their impact on marine organisms, especially sediment-dwelling species, as well as possible ecotoxicological effects of galvanic anodes are scarce. To investigate possible ecotoxicological effects to the marine environment, the diatom Phaedactylum tricornutum, the bacterium Aliivibrio fischeri and the amphipod Corophium volutator were exposed to dissolved galvanic anodes and solutions of aluminum and zinc, respectively, in standardized laboratory tests using natural seawater. In addition to acute toxicological effects, the uptake of these elements by C. volutator was investigated. Results The investigated anode material caused no acute toxicity to the tested bacteria and only weak but significant effects on algal growth. In case of the amphipods, the single elements Al and Zn showed significant effects only at the highest tested concentrations. Moreover, an accumulation of Al and In was observed in the crustacea species. Conclusions Overall, the findings of this study indicated no direct environmental impact on the tested marine organisms by the use of galvanic anodes for cathodic protection. However, the accumulation of metals in, e.g., crustaceans might enhance their trophic transfer within the marine food web.


Marine Policy ◽  
2021 ◽  
Vol 126 ◽  
pp. 104371 ◽  
Author(s):  
Nathalie A. Steins ◽  
Jeroen A. Veraart ◽  
Judith E.M. Klostermann ◽  
Marnix Poelman

Sign in / Sign up

Export Citation Format

Share Document