Coordinating energy management systems in smart cities with electric vehicles

2022 ◽  
Vol 307 ◽  
pp. 118241
Author(s):  
Mohamed Lotfi ◽  
Tiago Almeida ◽  
Mohammad S. Javadi ◽  
Gerardo J. Osório ◽  
Cláudio Monteiro ◽  
...  
2020 ◽  
Vol 10 (23) ◽  
pp. 8744
Author(s):  
Juan P. Torreglosa ◽  
Pablo Garcia-Triviño ◽  
David Vera ◽  
Diego A. López-García

The hybridization of vehicles is a viable step toward overcoming the challenge of the reduction of emissions related to road transport all over the world. To take advantage of the emission reduction potential of hybrid electric vehicles (HEVs), the appropriate design of their energy management systems (EMSs) to control the power flow between the engine and the battery is essential. This work presents a systematic literature review (SLR) of the more recent works that developed EMSs for HEVs. The review is carried out subject to the following idea: although the development of novel EMSs that seek the optimum performance of HEVs is booming, in the real world, HEVs continue to rely on well-known rule-based (RB) strategies. The contribution of this work is to present a quantitative comparison of the works selected. Since several studies do not provide results of their models against commercial RB strategies, it is proposed, as another contribution, to complete their results using simulations. From these results, it is concluded that the improvement of the analyzed EMSs ranges roughly between 5% and 10% with regard to commercial RB EMSs; in comparison to the optimum, the analyzed EMSs are nearer to the optimum than commercial RB EMSs.


2018 ◽  
Vol 141 ◽  
pp. 617-629 ◽  
Author(s):  
Marco Bernagozzi ◽  
Stene Charmer ◽  
Anastasios Georgoulas ◽  
Ileana Malavasi ◽  
Nicolas Michè ◽  
...  

2017 ◽  
Vol 1 (15) ◽  
pp. 334-339 ◽  
Author(s):  
I. Junquera ◽  
J. García-Villalobos ◽  
I. Zamora ◽  
P. Eguía ◽  
J.I. San Martín

2021 ◽  
Vol 13 (21) ◽  
pp. 11740
Author(s):  
Muhammad Majid Hussain ◽  
Rizwan Akram ◽  
Zulfiqar Ali Memon ◽  
Mian Hammad Nazir ◽  
Waqas Javed ◽  
...  

In this paper, three distinct distributed energy resources (DERs) modules have been built based on demand side management (DSM), and their use in power management of dwelling in future smart cities has been investigated. The investigated modules for DERs system are: incorporation of load shedding, reduction of grid penetration with renewable energy systems (RES), and implementation of home energy management systems (HEMS). The suggested approaches offer new potential for improving demand side efficiency and helping to minimize energy demand during peak hours. The main aim of this work was to investigate and explore how a specific DSM strategy for DER may assist in reducing energy usage while increasing efficiency by utilizing new developing technology. The Electrical Power System Analysis (ETAP) software was used to model and assess the integration of distributed generation, such as RES, in order to use local power storage. An energy management system has been used to evaluate a PV system with an individual household load, which proved beneficial when evaluating its potential to generate about 20–25% of the total domestic load. In this study, we have investigated how smart home appliances’ energy consumption may be minimized and explained why a management system is required to optimally utilize a PV system. Furthermore, the effect of integration of wind turbines to power networks to reduce the load on the main power grid has also been studied. The study revealed that smart grids improve energy efficiency, security, and management whilst creating environmental awareness for consumers with regards to power usage.


2018 ◽  
Vol 106 (4) ◽  
pp. 594-612 ◽  
Author(s):  
Yasuhiro Hayashi ◽  
Yu Fujimoto ◽  
Hideo Ishii ◽  
Yuji Takenobu ◽  
Hiroshi Kikusato ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document