The assessment of material handling strategies in dealing with sudden loading: The effects of load handling position on trunk biomechanics

2014 ◽  
Vol 45 (6) ◽  
pp. 1399-1405 ◽  
Author(s):  
Xiaopeng Ning ◽  
Jie Zhou ◽  
Boyi Dai ◽  
Majid Jaridi
Author(s):  
Hossein Motabar ◽  
Saman Madinei ◽  
Xiaopeng Ning

Shoulder disorders have been reported as the most severe musculoskeletal disorders among all body parts. Multiple occupational risk factors such as manual material handling, repetitive motion, overexertion, fatigue, and overhead tasks have been reported to be associated with the development of shoulder disorders. The objective of this study was to investigate the effect of height (low, middle, high) on shoulder muscles during sudden loading. Kinematics and Electromyography (EMG) was recorded from 14 male participants. Effect of height found to be significant on normalized EMG and load travel distance. Bilateral shoulder muscles indicated higher NEMG with the increase of the load’s altitude. This increase of muscle activity could have resulted from the greater potential energy of the load at higher altitudes which required extra muscle activity to maintain the biomechanical stability of the shoulder. Reduced stability of shoulder at higher altitudes caused proprioceptive deficit which resulted in higher load travel distance.


Ergonomics ◽  
2018 ◽  
Vol 61 (10) ◽  
pp. 1364-1373 ◽  
Author(s):  
Saman Madinei ◽  
Hossein Motabar ◽  
Xiaopeng Ning

2022 ◽  
pp. 567-584
Author(s):  
Sanjay M. Kotadiya ◽  
Joydeep Majumder ◽  
Sunil Kumar

Occupational morbidities during manual material handling operations are routine at workplaces. This is a global burden contributing substantially to the economy. The multifactorial etiology for musculoskeletal disorders (MSDs) along with workplace stressors require multidisciplinary preventive effort. Biomechanics plays a pivotal role in occupational health research quarrying into the root cause analysis of posture, load handling, muscular loading, balance, and stability at work. Sophisticated instrumentation and experimental techniques assist in understanding the biomechanical mechanisms of MSDs and ergonomic principles, etc. Kinetic, kinematic, isotonic, isokinetic, as well as isometric experimental modes investigate body postures and muscular responses. Foundation of biomechanics instrumentation and injury mechanism would aid researchers alongside ergonomists in dealing with identification, assessment, and control of workplace risks through participatory ergonomics approach. Judicious utilization of this discipline would approach a long-term sustainable solution to protect health and safety of workers at the workplace.


Author(s):  
Sanjay M. Kotadiya ◽  
Joydeep Majumder ◽  
Sunil Kumar

Occupational morbidities during manual material handling operations are routine at workplaces. This is a global burden contributing substantially to the economy. The multifactorial etiology for musculoskeletal disorders (MSDs) along with workplace stressors require multidisciplinary preventive effort. Biomechanics plays a pivotal role in occupational health research quarrying into the root cause analysis of posture, load handling, muscular loading, balance, and stability at work. Sophisticated instrumentation and experimental techniques assist in understanding the biomechanical mechanisms of MSDs and ergonomic principles, etc. Kinetic, kinematic, isotonic, isokinetic, as well as isometric experimental modes investigate body postures and muscular responses. Foundation of biomechanics instrumentation and injury mechanism would aid researchers alongside ergonomists in dealing with identification, assessment, and control of workplace risks through participatory ergonomics approach. Judicious utilization of this discipline would approach a long-term sustainable solution to protect health and safety of workers at the workplace.


Author(s):  
J.N. Ramsey ◽  
D.P. Cameron ◽  
F.W. Schneider

As computer components become smaller the analytical methods used to examine them and the material handling techniques must become more sensitive, and more sophisticated. We have used microbulldozing and microchiseling in conjunction with scanning electron microscopy, replica electron microscopy, and microprobe analysis for studying actual and potential problems with developmental and pilot line devices. Foreign matter, corrosion, etc, in specific locations are mechanically loosened from their substrates and removed by “extraction replication,” and examined in the appropriate instrument. The mechanical loosening is done in a controlled manner by using a microhardness tester—we use the attachment designed for our Reichert metallograph. The working tool is a pyramid shaped diamond (a Knoop indenter) which can be pushed into the specimen with a controlled pressure and in a specific location.


2019 ◽  
Vol 12 (1) ◽  
pp. 7-20
Author(s):  
Péter Telek ◽  
Béla Illés ◽  
Christian Landschützer ◽  
Fabian Schenk ◽  
Flavien Massi

Nowadays, the Industry 4.0 concept affects every area of the industrial, economic, social and personal sectors. The most significant changings are the automation and the digitalization. This is also true for the material handling processes, where the handling systems use more and more automated machines; planning, operation and optimization of different logistic processes are based on many digital data collected from the material flow process. However, new methods and devices require new solutions which define new research directions. In this paper we describe the state of the art of the material handling researches and draw the role of the UMi-TWINN partner institutes in these fields. As a result of this H2020 EU project, scientific excellence of the University of Miskolc can be increased and new research activities will be started.


Sign in / Sign up

Export Citation Format

Share Document