Characterization of selected conservative and non-conservative isotopes in mine effluent and impacted surface waters: Implications for tracer applications at the mine-site scale

2018 ◽  
Vol 91 ◽  
pp. 1-13 ◽  
Author(s):  
Clayton Larkins ◽  
Kaisa Turunen ◽  
Irmeli Mänttäri ◽  
Yann Lahaye ◽  
Nina Hendriksson ◽  
...  
2021 ◽  
Vol 59 (5) ◽  
pp. 913-945
Author(s):  
Steve R. Beyer ◽  
Kurt Kyser ◽  
Tom G. Kotzer ◽  
Kevin Ansdell ◽  
David Quirt

ABSTRACT An orientation survey using surficial media was performed over the high-grade McArthur River unconformity-related U deposit (Saskatchewan, Canada) to test whether or not secondary dispersion of elements related to the ore body or alteration zone can be detected at the surface more than 500 m above the deposit. Organic-rich Ah-horizon soils, Fe-rich B-horizon soils, C-horizon soils, tree cores of Jack pine (Pinus banksiana), and glacially dispersed boulders of Manitou Falls Formation sandstone that host the U deposit were collected in four sampling grids near the mine site. Two of the grids overlaid the trace of the P2 fault that hosts the deposit and extends nearly to the surface, one grid overlaid both the P2 fault and one of the high-grade ore bodies (Zone 4), and one grid was located 2.5 km away from the ore body surface trace in the barren hanging wall of the P2 fault. The grid overlying the Zone 4 ore body had the highest proportion of samples with elevated U and low 207Pb/206Pb ratios, the latter indicative of radiogenic Pb from a high-U source, measured in two size fractions of Ah-horizon soils using Na pyrophosphate leach, pine tree cores using total digestion, and sandstone boulders using 2% HNO3 leach. A handful of pathfinder elements, such as As, Co, Ni, and Pb, are variably associated with the U and radiogenic Pb. Sandstone boulders with an assemblage of dravite + kaolinite ± illite, determined using shortwave infrared (SWIR) spectroscopy and matching the alteration mineralogy in the Manitou Falls Formation above the U deposit, were prevalent in the grid above the Zone 4 ore body and in the adjacent grid in the direction of glacial dispersion. A coarse fraction of the B-horizon soils, leached with 5% HNO3, highlighted the grid above the Zone 4 ore body to a lesser extent, whereas HNO3 leaches and aqua regia digests of C-horizon soil separates did not highlight the P2 fault or ore body trace due to influence by parent till mineralogy. Results of environmental monitoring at the mine site, which was active at the time of sampling, suggest that dust containing U, Pb, and radionuclides from waste rock piles and a ventilation shaft could influence A-horizon soil geochemistry near the mine site, and that U and radiogenic Pb anomalies in B- and C-horizon soils near the water table are close to a treated mine effluent discharge point. However, older trees that record elevated U and radiogenic Pb in annual rings that pre-date mining activity, and alteration mineralogy and geochemistry of boulders that are less susceptible to the influences of mining activity, add confidence that the geochemical anomaly in diverse surficial media above the Zone 4 ore body represents secondary dispersion from the underlying U deposit.


Agric ◽  
2019 ◽  
Vol 31 (1) ◽  
pp. 75-88 ◽  
Author(s):  
Erny Yuniarti ◽  
Ida F Dalmacio ◽  
Erlinda S Paterno

The purposes of the study was to isolate, to characterize, and to identify rhizobacteria from plant rhizosphere growing in gold and copper mine. The isolation of rhizobacteria used N-free semisolid agar media, TSA, and SLP plus heavy metals (HMs), namely Pb, Cd, and or Cu. Isolated rhizobacteria were subsequently characterized for resistance to higher level of Pb, Cd, Cu in SLP media. Cultural and morphological characterization of rhizobacteria were conducted for cell morphology, motility, Gram staining, and biofilm formation. The rhizobacteria identification used sequence analysis of the 16S RNA gene fragments. The results showed that the majority of rhizobacterial from Cu mine site (66.7% of 21 isolates) were resistant to Cu (72150 ppm) while the majority of rhizobacteria from gold mine site (77.8% of 18 isolates) were sensitive to 72 ppm Cu. Majority of Cu in the soil was insoluble as granules attaching to gravel so that rhizobacteria of Cu mine site have been exposed and adapted to available Cu. This fact, explaining that the rhizobacteria’s MIC value was lower than the total Cu level in the soil. Three HMs-resistant rhizobacter (PbSM 2.1, MGR 334, and CuNFbM 4.1) formed biofilms, which was as one of the resistance mechanism to HMs. This research informed that HM contaminated-soil is better source for obtaining HM resistant rhizobacteria than HM uncontaminated-soil. The use four isolation media produce rhizobacteria which was more diverse than rhizobacteria from each isolation medium. Further characterization needs to be done to obtain HM resistant-rhizobacteria which can be used as biofertilizers and phytoremediation agent.


2019 ◽  
Vol 41 (5) ◽  
pp. 1909-1921 ◽  
Author(s):  
Ana T. Luís ◽  
José António Grande ◽  
Nuno Durães ◽  
José Miguel Dávila ◽  
María Santisteban ◽  
...  

2020 ◽  
Vol 12 (2) ◽  
pp. 137-147 ◽  
Author(s):  
Sophia Beyer ◽  
Regine Szewzyk ◽  
Regina Gnirss ◽  
Reimar Johne ◽  
Hans-Christoph Selinka

2012 ◽  
Vol 61 (3) ◽  
pp. 611-623 ◽  
Author(s):  
Diego Arosio ◽  
Laura Longoni ◽  
Monica Papini ◽  
Luigi Zanzi

2014 ◽  
Vol 80 (10) ◽  
pp. 3086-3094 ◽  
Author(s):  
Hyatt C. Green ◽  
Richard A. Haugland ◽  
Manju Varma ◽  
Hana T. Millen ◽  
Mark A. Borchardt ◽  
...  

ABSTRACTQuantitative real-time PCR (qPCR) assays that target the human-associated HF183 bacterial cluster within members of the genusBacteroidesare among the most widely used methods for the characterization of human fecal pollution in ambient surface waters. In this study, we show that a current TaqMan HF183 qPCR assay (HF183/BFDrev) routinely forms nonspecific amplification products and introduce a modified TaqMan assay (HF183/BacR287) that alleviates this problem. The performance of each qPCR assay was compared in head-to-head experiments investigating limits of detection, analytical precision, predicted hybridization to 16S rRNA gene sequences from a reference database, and relative marker concentrations in fecal and sewage samples. The performance of the modified HF183/BacR287 assay is equal to or improves upon that of the original HF183/BFDrev assay. In addition, a qPCR chemistry designed to combat amplification inhibition and a multiplexed internal amplification control are included. In light of the expanding use of PCR-based methods that rely on the detection of extremely low concentrations of DNA template, such as qPCR and digital PCR, the new TaqMan HF183/BacR287 assay should provide more accurate estimations of human-derived fecal contaminants in ambient surface waters.


Sign in / Sign up

Export Citation Format

Share Document