Using a high-density rain gauge network to estimate extreme rainfall frequencies in Minnesota

2011 ◽  
Vol 31 (1) ◽  
pp. 5-11 ◽  
Author(s):  
Kenneth A. Blumenfeld ◽  
Richard H. Skaggs
2021 ◽  
Author(s):  
Sidiki Sanogo ◽  
Philippe Peyrillé ◽  
Romain Roehrig ◽  
Françoise Guichard ◽  
Ousmane Ouedraogo

<p>The Sahel has experienced an increase in the frequency and intensity of extreme rainfall events over the recent decades. These trends are expected to continue in the future. However the properties of these events have so far received little attention. In the present study, we define a heavy precipitating event (HPE) as the occurrence of daily-mean precipitation exceeding a given percentile (e.g., 99<sup>th</sup> and higher) over a 1°x1° pixel and examine their spatial distribution, intensity, seasonality and interannual variability. We take advantage of an original reference dataset based on a rather high-density rain-gauge network over Burkina Faso (142 stations) to evaluate 22 precipitation gridded datasets often used in the literature, based on rain-gauge-only measurements, satellite measurements, or both. Our reference dataset documents the HPEs over Burkina Faso. The 99<sup>th</sup> percentile identifies events greater than 26 mm d<sup>-1</sup> with a ~2.5 mm confidence interval depending on the number of stations within a 1°x1° pixel. The HPEs occur in phase with the West African monsoon annual cycle, more frequently during the monsoon core season and during wet years. The evaluation of the gridded rainfall products reveals that only two of the datasets, namely the rain-gauge-only based products GPCC-DDv1 and REGENv1, are able to properly reproduce all of the HPE features examined in the present work. A subset of the remaining rainfall products also provide satisfying skills over Burkina Faso, but generally only for a few HPE features examined here. In particular, we notice a general better performance for rainfall products that include rain-gauge data in the calibration process, while estimates using microwave sensor measurements are prone to overestimate the HPE intensity. The agreement among the 22 datasets is also assessed over the entire Sahel region. While the meridional gradient in HPE properties is well captured by the good performance subset, the zonal direction exhibit larger inter-products spread. This advocates for the need to continue similar evaluation with the available rain-gauge network available in West Africa, both to enhance the HPE documentation and understanding at the scale of the region and to help improve the rainfall dataset quality.</p>


2015 ◽  
Vol 133 ◽  
pp. 188-200 ◽  
Author(s):  
Ahmed M. El Kenawy ◽  
Juan I. Lopez-Moreno ◽  
Matthew F. McCabe ◽  
Sergio M. Vicente-Serrano

2016 ◽  
Vol 18 (6) ◽  
pp. 1055-1068 ◽  
Author(s):  
Dashan Wang ◽  
Xianwei Wang ◽  
Lin Liu ◽  
Dagang Wang ◽  
Huabing Huang ◽  
...  

The merged precipitation data of Climate Prediction Center Morphing Technique and gauge observations (CMPA) generated for continental China has relatively high spatial and temporal resolution (hourly and 0.1°), while few studies have applied it to investigate the typhoon-related extreme rainfall. This study evaluates the CMPA estimate in quantifying the typhoon-related extreme rainfall using a dense rain gauge network in Guangdong Province, China. The results show that the event-total precipitation from CMPA is generally in agreement with gauges by relative bias (RB) of 2.62, 10.74 and 0.63% and correlation coefficients (CCs) of 0.76, 0.86 and 0.91 for typhoon Utor, Usagi and Linfa events, respectively. At the hourly scale, CMPA underestimates the occurrence of light rain (<1 mm/h) and heavy rain (>16 mm/h), while overestimates the occurrence of moderate rain. CMPA shows high probability of detection (POD = 0.93), relatively large false alarm ratio (FAR = 0.22) and small missing ratio (0.07). CMPA captures the spatial patterns of typhoon-related rain depth, and is in agreement with the spatiotemporal evolution of hourly gauge observations by CC from 0.93 to 0.99. In addition, cautiousness should be taken when applying it in hydrologic modeling for flooding forecasting since CMPA underestimates heavy rain (>16 mm/h).


2009 ◽  
pp. n/a-n/a ◽  
Author(s):  
M. Carmen Casas ◽  
Raül Rodríguez ◽  
Ángel Redaño

2021 ◽  
Vol 25 (4) ◽  
pp. 2301-2325
Author(s):  
Anthony Michelon ◽  
Lionel Benoit ◽  
Harsh Beria ◽  
Natalie Ceperley ◽  
Bettina Schaefli

Abstract. Spatial rainfall patterns exert a key control on the catchment-scale hydrologic response. Despite recent advances in radar-based rainfall sensing, rainfall observation remains a challenge, particularly in mountain environments. This paper analyzes the importance of high-density rainfall observations for a 13.4 km2 catchment located in the Swiss Alps, where rainfall events were monitored during 3 summer months using a network of 12 low-cost, drop-counting rain gauges. We developed a data-based analysis framework to assess the importance of high-density rainfall observations to help predict the hydrological response. The framework involves the definition of spatial rainfall distribution metrics based on hydrological and geomorphological considerations and a regression analysis of how these metrics explain the hydrologic response in terms of runoff coefficient and lag time. The gained insights on dominant predictors are then used to investigate the optimal rain gauge network density for predicting the streamflow response metrics, including an extensive test of the effect of down-sampled rain gauge networks and an event-based rainfall–runoff model to evaluate the resulting optimal rain gauge network configuration. The analysis unravels that, besides rainfall amount and intensity, the rainfall distance from the outlet along the stream network is a key spatial rainfall metric. This result calls for more detailed observations of stream network expansions and the parameterization of along-stream processes in rainfall–runoff models. In addition, despite the small spatial scale of this case study, the results show that an accurate representation of the rainfall field (with at least three rain gauges) is of prime importance for capturing the key characteristics of the hydrologic response in terms of generated runoff volumes and delay for the studied catchment (0.22 rain gauges per square kilometer). The potential of the developed rainfall monitoring and analysis framework for rainfall–runoff analysis in small catchments remains to be fully unraveled in future studies, potentially also including urban catchments.


Sign in / Sign up

Export Citation Format

Share Document