scholarly journals Duality system-based derivation of the modified scaled boundary finite element method in the time domain and its application to anisotropic soil

2016 ◽  
Vol 40 (9-10) ◽  
pp. 5230-5255 ◽  
Author(s):  
Gao Lin ◽  
Shan Lu ◽  
Jun Liu
2011 ◽  
Vol 2011 ◽  
pp. 1-23 ◽  
Author(s):  
Sanaz Mahmoudpour ◽  
Reza Attarnejad ◽  
Cambyse Behnia

Analysis and design of structures subjected to arbitrary dynamic loadings especially earthquakes have been studied during past decades. In practice, the effects of soil-structure interaction on the dynamic response of structures are usually neglected. In this study, the effect of soil-structure interaction on the dynamic response of structures has been examined. The substructure method using dynamic stiffness of soil is used to analyze soil-structure system. A coupled model based on finite element method and scaled boundary finite element method is applied. Finite element method is used to analyze the structure, and scaled boundary finite element method is applied in the analysis of unbounded soil region. Due to analytical solution in the radial direction, the radiation condition is satisfied exactly. The material behavior of soil and structure is assumed to be linear. The soil region is considered as a homogeneous half-space. The analysis is performed in time domain. A computer program is prepared to analyze the soil-structure system. Comparing the results with those in literature shows the exactness and competency of the proposed method.


2011 ◽  
Vol 378-379 ◽  
pp. 213-217
Author(s):  
Shang Ming Li

The scaled boundary finite element method (SBFEM) was extended to solve dam-reservoir interaction problems in the time domain and a dynamic stiffness used in the SBFEM of semi-infinite reservoir in the time domain was proposed, which was evaluated by the Bessel function. Based on the dynamic stiffness, transient responses subjected to horizontal ground motions were analyzed through coupling the SBFEM and finite element method (FEM). A dam was modeled by FEM, while the whole fluid in reservoir was modeled by the SBFEM alone or a combination of FEM and SBFEM. Two benchmark examples were considered to check the accuracy of the dynamic stiffness. Results were compared with those from analytical or substructure methods and good agreements were found.


Sign in / Sign up

Export Citation Format

Share Document