scholarly journals A model for burden distribution and gas flow distribution of bell-less top blast furnace with parallel hoppers

2016 ◽  
Vol 40 (23-24) ◽  
pp. 10254-10273 ◽  
Author(s):  
Lin Shi ◽  
Guangsheng Zhao ◽  
Mingxin Li ◽  
Xiang Ma
Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1003 ◽  
Author(s):  
Li ◽  
Saxén ◽  
Liu ◽  
Zou ◽  
Shao

The distribution of burden layers in an ironmaking blast furnace strongly influences the conditions in the upper part of the process. The bed permeability largely depends on the distribution of ore and coke in the lumpy zone, which affects the radial gas flow distribution in the shaft. Along with the continuous advancement of technology, more information about the internal conditions of the blast furnace can be obtained through advanced measurement equipment, including 2D profiles and 3D surface maps of the top burden surface. However, the change of layer structure along with the burden descent cannot be directly measured. A mathematical model predicting the burden distribution and the internal layer structure during the descending process is established in this paper. The accuracy of the burden distribution model is verified by a comparison with experimental results. A sensitivity study was undertaken to clarify the role of some factors on the arising layer distribution, including the descent-rate distribution, the initial burden surface profile, and the charging direction through the charging matrix. The findings can be used as a theoretical basis to guide plant operations for optimizing the charging.


2011 ◽  
Vol 51 (10) ◽  
pp. 1617-1623 ◽  
Author(s):  
Jong-In Park ◽  
Ui-Hyun Baek ◽  
Kyoung-Soo Jang ◽  
Han-Sang Oh ◽  
Jeong-Whan Han

Processes ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 239 ◽  
Author(s):  
Meng Li ◽  
Han Wei ◽  
Yao Ge ◽  
Guocai Xiao ◽  
Yaowei Yu

Charging directly affects the burden distribution of a blast furnace, which determines the gas distribution in the shaft of the furnace. Adjusting the charging can improve the distribution of the gas flow, increase the gas utilization efficiency of the furnace, reduce energy consumption, and prolong the life of the blast furnace. In this paper, a mathematical model of blast furnace charging was developed and applied on a steel plant in China, which includes the display of the burden profile, burden layers, descent speed of the layers, and ore/coke ratio. Furthermore, the mathematical model is developed to combine the radar data of the burden profile. The above model is currently used in Nanjing Steel as a reference for operators to adjust the charging. The model is being tested with a radar system on the blast furnace.


Metallurgist ◽  
1969 ◽  
Vol 13 (1) ◽  
pp. 10-12
Author(s):  
V. I. Vier ◽  
L. Ya. Shparber

2018 ◽  
Vol 277 ◽  
pp. 54-65 ◽  
Author(s):  
Anatoliy Golovchenko ◽  
Yuliya Pazynich ◽  
Michał Potempa

The paper is devoted to the issues of energy saving automatic control of radial burden distribution in the blast furnace throat. The main idea consists in control with prediction of the control resulting on the basis of automatic monitoring of burden surface texture. The paper develops the mathematic description of burden surface texture on the blast furnace throat by means of substantiation of minimum quantity of general indicators of the mixture being closely related to the main parameters of blast furnace processes. It is the first time that the optimum value of hoper depth in burden surface at 0.14 – 0.2 of throat diameter determined, the methods of its stabilization at the rate are substantiated, the new regularity of burden surface formation on the operating blast furnace throat is shown as consisting in the fact that the hoper depth on the surface is mainly changed responding the process of material charge rather than bulk material descent after the charge. It was also substantiated for the first time that radioisotopic methods for current control of burden distribution on the blast furnace throat provide timely formation of control actions for gas flow stabilization. The principle of self-tuning was theoretically substantiated for monitoring system of gamma profilometer responding to the monitoring conditions with respect to high penetration and random character of gamma rays. The principle enables significant improvement of accuracy, quick-response and radiological safety of gamma profilometer operation. The possibility of determination of burden surface texture on the throat of operating blast furnace and distribution of burden components according to infrared radiation of the surface without application of radiation hazardous monitoring means was proved for the first time.


Metallurgist ◽  
1980 ◽  
Vol 24 (6) ◽  
pp. 193-195
Author(s):  
I. A. Rylov ◽  
M. M. Shmonin ◽  
V. A. Makarychev ◽  
V. M. Yanchevskii ◽  
O. R. Basargin ◽  
...  

2004 ◽  
Vol 44 (3) ◽  
pp. 518-526 ◽  
Author(s):  
Juan Jiménez ◽  
Javier Mochón ◽  
Jesús Sainz de Ayala

Metallurgist ◽  
1981 ◽  
Vol 25 (8) ◽  
pp. 285-287
Author(s):  
G. I. Fedorenko ◽  
A. I. Kuprin

Sign in / Sign up

Export Citation Format

Share Document