scholarly journals The solution of fractional order epidemic model by implicit Adams methods

2017 ◽  
Vol 43 ◽  
pp. 78-84 ◽  
Author(s):  
I. Ameen ◽  
P. Novati
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Chernet Tuge Deressa ◽  
Gemechis File Duressa

AbstractWe consider a SEAIR epidemic model with Atangana–Baleanu fractional-order derivative. We approximate the solution of the model using the numerical scheme developed by Toufic and Atangana. The numerical simulation corresponding to several fractional orders shows that, as the fractional order reduces from 1, the spread of the endemic grows slower. Optimal control analysis and simulation show that the control strategy designed is operative in reducing the number of cases in different compartments. Moreover, simulating the optimal profile revealed that reducing the fractional-order from 1 leads to the need for quick starting of the application of the designed control strategy at the maximum possible level and maintaining it for the majority of the period of the pandemic.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Atimad Harir ◽  
Said Malliani ◽  
Lalla Saadia Chandli

In this paper, the conformable fractional-order SIR epidemic model are solved by means of an analytic technique for nonlinear problems, namely, the conformable fractional differential transformation method (CFDTM) and variational iteration method (VIM). These models are nonlinear system of conformable fractional differential equation (CFDE) that has no analytic solution. The VIM is based on conformable fractional derivative and proved. The result revealed that both methods are in agreement and are accurate and efficient for solving systems of OFDE.


2015 ◽  
Vol 7 (4) ◽  
pp. 181
Author(s):  
Bonyah Ebenezer ◽  
Kwasi Awuah-Werekoh ◽  
Joseph Acquah

<p>In this paper, we investigate an epidemic model of HIV and Malaria co-infection using fractional order Calculus (FOC). The multistep generalized differential transform method (MSGDTM) is employed to obtain an accurate approximate solution to the epidemic model of HIV and Malaria co-infection disease in fractional order. A unique positive solution for HIV and Malaria co-infection is presented in fractional order form. For the integer case derivatives, the approximate solution of MSGDTM and the Runge–Kutta–order four scheme are compared. Numerical results are produced for the justification for this method.</p>


2020 ◽  
Vol 140 ◽  
pp. 110104
Author(s):  
Mahmoud A.M. Abdelaziz ◽  
Ahmad Izani Ismail ◽  
Farah A. Abdullah ◽  
Mohd Hafiz Mohd

2020 ◽  
Vol 10 (23) ◽  
pp. 8316
Author(s):  
Kamil Kozioł ◽  
Rafał Stanisławski ◽  
Grzegorz Bialic

In this paper, the fractional-order generalization of the susceptible-infected-recovered (SIR) epidemic model for predicting the spread of the COVID-19 disease is presented. The time-domain model implementation is based on the fixed-step method using the nabla fractional-order difference defined by Grünwald-Letnikov formula. We study the influence of fractional order values on the dynamic properties of the proposed fractional-order SIR model. In modeling the COVID-19 transmission, the model’s parameters are estimated while using the genetic algorithm. The model prediction results for the spread of COVID-19 in Italy and Spain confirm the usefulness of the introduced methodology.


Author(s):  
Parvaiz Ahmad Naik ◽  
Muhammad Bilal Ghori ◽  
Jian Zu ◽  
Zohre Eskandari ◽  
Mehraj-ud-din Naik

The present paper studies a fractional-order SEIR epidemic model for the transmission dynamics of infectious diseases such as HIV and HBV that spreads in the host population. The total host population is considered bounded, and Holling type-II saturation incidence rate is involved as the infection term. Using the proposed SEIR epidemic model, the threshold quantity, namely basic reproduction number R0, is obtained that determines the status of the disease, whether it dies out or persists in the whole population. The model’s analysis shows that two equilibria exist, namely, disease-free equilibrium (DFE) and endemic equilibrium (EE). The global stability of the equilibria is determined using a Lyapunov functional approach. The disease status can be verified based on obtained threshold quantity R0. If R0 < 1, then DFE is globally stable, leading to eradicating the population’s disease. If R0 > 1, a unique EE exists, and that is globally stable under certain conditions in the feasible region. The Caputo type fractional derivative is taken as the fractional operator. The bifurcation and sensitivity analyses are also performed for the proposed model that determines the relative importance of the parameters into disease transmission. The numerical solution of the model is obtained by the generalized Adams- Bashforth-Moulton method. Finally, numerical simulations are performed to illustrate and verify the analytical results.


2021 ◽  
pp. 539-557
Author(s):  
Juan E. Santos ◽  
José M. Carcione ◽  
Gabriela B. Savioli ◽  
Patricia M. Gauzellino

Sign in / Sign up

Export Citation Format

Share Document