scholarly journals Symbolic and numeric scheme for solution of linear integro-differential equations with random parameter uncertainties and Gaussian stochastic process input

2018 ◽  
Vol 56 ◽  
pp. 15-31 ◽  
Author(s):  
I.E. Poloskov ◽  
C. Soize
2018 ◽  
Vol 46 (6A) ◽  
pp. 3038-3066 ◽  
Author(s):  
Mengyang Gu ◽  
Xiaojing Wang ◽  
James O. Berger

2006 ◽  
Vol Volume 5, Special Issue TAM... ◽  
Author(s):  
Mario Lefebvre

International audience A two-dimensional controlled stochastic process defined by a set of stochastic differential equations is considered. Contrary to the most frequent formulation, the control variables appear only in the infinitesimal variances of the process, rather than in the infinitesimal means. The differential game ends the first time the two controlled processes are equal or their difference is equal to a given constant. Explicit solutions to particular problems are obtained by making use of the method of similarity solutions to solve the appropriate partial differential equation. On considère un processus stochastique commandé bidimensionnel défini par un ensemble d'équations différentielles stochastiques. Contrairement à la formulation la plus fréquente, les variables de commande apparaissent dans les variances infinitésimales du processus, plutôt que dans les moyennes infinitésimales. Le jeu différentiel prend fin lorsque les deux processus sont égaux ou que leur différence est égale à une constante donnée. Des solutions explicites à des problèmes particuliers sont obtenues en utilisant la méthode des similitudes pour résoudre l'équation aux dérivées partielles appropriée.


Author(s):  
Peter E Kloeden ◽  
Arnulf Jentzen

Random ordinary differential equations (RODEs) are ordinary differential equations (ODEs) with a stochastic process in their vector field. They can be analysed pathwise using deterministic calculus, but since the driving stochastic process is usually only Hölder continuous in time, the vector field is not differentiable in the time variable, so traditional numerical schemes for ODEs do not achieve their usual order of convergence when applied to RODEs. Nevertheless deterministic calculus can still be used to derive higher order numerical schemes for RODEs via integral versions of implicit Taylor-like expansions. The theory is developed systematically here and applied to illustrative examples involving Brownian motion and fractional Brownian motion as the driving processes.


2018 ◽  
Vol 24 (2) ◽  
pp. 129-137
Author(s):  
Iryna Rozora ◽  
Mariia Lyzhechko

AbstractThe paper is devoted to the model construction for input stochastic processes of a time-invariant linear system with a real-valued square-integrable impulse response function. The processes are considered as Gaussian stochastic processes with discrete spectrum. The response on the system is supposed to be an output process. We obtain the conditions under which the constructed model approximates a Gaussian stochastic process with given accuracy and reliability in the Banach space{C([0,1])}, taking into account the response of the system. For this purpose, the methods and properties of square-Gaussian processes are used.


Author(s):  
Steven N. Evans

AbstractWe consider continuous Gaussian stochastic process indexed by a compact subset of a vector space over a local field. Under suitable conditions we obtain an asymptotic expression for the probability that such a process will exceed a high level. An important component in the proof of these results is a theorem of independent interest concerning the amount of ‘time’ which the process spends at high levels.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1417 ◽  
Author(s):  
Julia Calatayud ◽  
Juan Carlos Cortés ◽  
Marc Jornet ◽  
Francisco Rodríguez

In this paper, we are concerned with the construction of numerical schemes for linear random differential equations with discrete delay. For the linear deterministic differential equation with discrete delay, a recent contribution proposed a family of non-standard finite difference (NSFD) methods from an exact numerical scheme on the whole domain. The family of NSFD schemes had increasing order of accuracy, was dynamically consistent, and possessed simple computational properties compared to the exact scheme. In the random setting, when the two equation coefficients are bounded random variables and the initial condition is a regular stochastic process, we prove that the randomized NSFD schemes converge in the mean square (m.s.) sense. M.s. convergence allows for approximating the expectation and the variance of the solution stochastic process. In practice, the NSFD scheme is applied with symbolic inputs, and afterward the statistics are explicitly computed by using the linearity of the expectation. This procedure permits retaining the increasing order of accuracy of the deterministic counterpart. Some numerical examples illustrate the approach. The theoretical m.s. convergence rate is supported numerically, even when the two equation coefficients are unbounded random variables. M.s. dynamic consistency is assessed numerically. A comparison with Euler’s method is performed. Finally, an example dealing with the time evolution of a photosynthetic bacterial population is presented.


2014 ◽  
Vol 2014 ◽  
pp. 1-25 ◽  
Author(s):  
M.-C. Casabán ◽  
J.-C. Cortés ◽  
J.-V. Romero ◽  
M.-D. Roselló

Deterministic differential equations are useful tools for mathematical modelling. The consideration of uncertainty into their formulation leads to random differential equations. Solving a random differential equation means computing not only its solution stochastic process but also its main statistical functions such as the expectation and standard deviation. The determination of its first probability density function provides a more complete probabilistic description of the solution stochastic process in each time instant. In this paper, one presents a comprehensive study to determinate the first probability density function to the solution of linear random initial value problems taking advantage of the so-called random variable transformation method. For the sake of clarity, the study has been split into thirteen cases depending on the way that randomness enters into the linear model. In most cases, the analysis includes the specification of the domain of the first probability density function of the solution stochastic process whose determination is a delicate issue. A strong point of the study is the presentation of a wide range of examples, at least one of each of the thirteen casuistries, where both standard and nonstandard probabilistic distributions are considered.


Sign in / Sign up

Export Citation Format

Share Document