Static contact analysis of spiral bevel gear based on modified VFIFE (vector form intrinsic finite element) method

2018 ◽  
Vol 60 ◽  
pp. 192-207 ◽  
Author(s):  
Xiangying Hou ◽  
Zongde Fang ◽  
Xijin Zhang
2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Yuan Chen ◽  
Rupeng Zhu ◽  
Guanghu Jin ◽  
Yeping Xiong

Spiral bevel gears occupy several advantages such as high contact ratio, strong carrying capacity, and smooth operation, which become one of the most widely used components in high-speed stage of the aeronautical transmission system. Its dynamic characteristics are addressed by many scholars. However, spiral bevel gears, especially tooth fracture occurrence and monitoring, are not to be investigated, according to the limited published issues. Therefore, this paper establishes a three-dimensional model and finite element model of the Gleason spiral bevel gear pair. The model considers the effect of tooth root fracture on the system due to fatigue. Finite element method is used to compute the mesh generation, set the boundary condition, and carry out the dynamic load. The harmonic response spectra of the base under tooth fracture are calculated and the influence of main parameters on monitoring failure is investigated as well. The results show that the change of torque affects insignificantly the determination of whether or not the system has tooth fracture. The intermediate frequency interval (200 Hz–1000 Hz) is the best interval to judge tooth fracture occurrence. The best fault test region is located in the working area where the system is going through meshing. The simulation calculation provides a theoretical reference for spiral bevel gear system test and fault diagnosis.


Author(s):  
Xiangying Hou ◽  
Yuzhe Zhang ◽  
Hong Zhang ◽  
Jian Zhang ◽  
Zhengminqing Li ◽  
...  

The vector form intrinsic finite element (VFIFE) method is springing up as a new numerical method in strong non-linear structural analysis for its good convergence, but has been constricted in static or transient analysis. To overwhelm its disadvantages, a new damping model was proposed: the value of damping force is proportional to relative velocity instead of absolute velocity, which could avoid inaccuracy in high-speed dynamic analysis. The accuracy and efficiency of the proposed method proved under low speed; dynamic characteristics and vibration rules have been verified under high speed. Simulation results showed that the modified VFIFE method could obtain numerical solutions with good efficiency and accuracy. Based on this modified method, high-speed vibration rules of spiral bevel gear pair under different loads have been concluded. The proposed method also provides a new way to solve high-speed rotor system dynamic problems.


2015 ◽  
Vol 9 (1) ◽  
pp. 637-645 ◽  
Author(s):  
Xiang Tieming ◽  
Zhou Shuiting ◽  
Yi Liao

In order to obtain the spiral bevel gear wheel natural frequencies and mode shapes in the unconstrained state for the purpose of dynamic characteristics study, the spiral bevel gear wheel three-dimensional solid model of a mini-bus main reducer is established in this paper. The finite element model of spiral bevel gear wheel which consists of 32351 nodes, 18436 solid187 tetrahedrons finite element method elements is established by using free grid meshing method in this paper. Extract the first 6 orders modals parameters such as natural frequencies and main vibration mode shapes by using the Lanczos method. The new 1st to 4th orders modals are formed by comparing and merging 2 orders repeated modals. In order to verify the effectiveness of the finite element analysis results, the experiment modal test based on the impulse force hammer percussion transient single-point excitation and multi-point response analysis method has been done. The maximum difference value of natural frequency between experimental modal test result and finite element modal analysis results is 29.86 Hz, the maximum error rate is 0.41%, which confirmed the result of finite element method is effective and reliable. The conclusions reflect the vibration response characteristics of spiral bevel gear wheel, and provide theoretical basis for dynamic response, structure design and optimization of spiral bevel gear wheel.


Author(s):  
Vilmos V. Simon

In this study an attempt is made to predict displacements and stresses in face-hobbed spiral bevel gears by using the finite element method. A displacement type finite element method is applied with curved, 20-node isoparametric elements. A method is developed for the automatic finite element discretization of the pinion and the gear. The full theory of the generation of tooth surfaces of face-hobbed spiral bevel gears is applied to determine the nodal point coordinates on tooth surfaces. The boundary conditions for the pinion and the gear are set automatically as well. A computer program was developed to implement the formulation provided above. By using this program the influence of design parameters and load position on tooth deflections and fillet stresses is investigated. On the basis of the results, obtained by performing a big number of computer runs, by using regression analysis and interpolation functions, equations for the calculation of tooth deflections and fillet stresses are derived.


Sign in / Sign up

Export Citation Format

Share Document