scholarly journals The discrete fractional order difference applied to an epidemic model with indirect transmission

Author(s):  
Carmen Coll ◽  
Alicia Herrero ◽  
Damián Ginestar ◽  
Elena Sánchez
2020 ◽  
Vol 10 (23) ◽  
pp. 8316
Author(s):  
Kamil Kozioł ◽  
Rafał Stanisławski ◽  
Grzegorz Bialic

In this paper, the fractional-order generalization of the susceptible-infected-recovered (SIR) epidemic model for predicting the spread of the COVID-19 disease is presented. The time-domain model implementation is based on the fixed-step method using the nabla fractional-order difference defined by Grünwald-Letnikov formula. We study the influence of fractional order values on the dynamic properties of the proposed fractional-order SIR model. In modeling the COVID-19 transmission, the model’s parameters are estimated while using the genetic algorithm. The model prediction results for the spread of COVID-19 in Italy and Spain confirm the usefulness of the introduced methodology.


2021 ◽  
Vol 24 ◽  
pp. 104106
Author(s):  
Yuexi Peng ◽  
Shaobo He ◽  
Kehui Sun

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Chernet Tuge Deressa ◽  
Gemechis File Duressa

AbstractWe consider a SEAIR epidemic model with Atangana–Baleanu fractional-order derivative. We approximate the solution of the model using the numerical scheme developed by Toufic and Atangana. The numerical simulation corresponding to several fractional orders shows that, as the fractional order reduces from 1, the spread of the endemic grows slower. Optimal control analysis and simulation show that the control strategy designed is operative in reducing the number of cases in different compartments. Moreover, simulating the optimal profile revealed that reducing the fractional-order from 1 leads to the need for quick starting of the application of the designed control strategy at the maximum possible level and maintaining it for the majority of the period of the pandemic.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Atimad Harir ◽  
Said Malliani ◽  
Lalla Saadia Chandli

In this paper, the conformable fractional-order SIR epidemic model are solved by means of an analytic technique for nonlinear problems, namely, the conformable fractional differential transformation method (CFDTM) and variational iteration method (VIM). These models are nonlinear system of conformable fractional differential equation (CFDE) that has no analytic solution. The VIM is based on conformable fractional derivative and proved. The result revealed that both methods are in agreement and are accurate and efficient for solving systems of OFDE.


2015 ◽  
Vol 7 (4) ◽  
pp. 181
Author(s):  
Bonyah Ebenezer ◽  
Kwasi Awuah-Werekoh ◽  
Joseph Acquah

<p>In this paper, we investigate an epidemic model of HIV and Malaria co-infection using fractional order Calculus (FOC). The multistep generalized differential transform method (MSGDTM) is employed to obtain an accurate approximate solution to the epidemic model of HIV and Malaria co-infection disease in fractional order. A unique positive solution for HIV and Malaria co-infection is presented in fractional order form. For the integer case derivatives, the approximate solution of MSGDTM and the Runge–Kutta–order four scheme are compared. Numerical results are produced for the justification for this method.</p>


2020 ◽  
Vol 140 ◽  
pp. 110104
Author(s):  
Mahmoud A.M. Abdelaziz ◽  
Ahmad Izani Ismail ◽  
Farah A. Abdullah ◽  
Mohd Hafiz Mohd

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
A. George Maria Selvam ◽  
Jehad Alzabut ◽  
Mary Jacintha ◽  
Abdullah Özbekler

The paper studies the oscillation of a class of nonlinear fractional order difference equations with damping term of the form Δψλzηλ+pλzηλ+qλF∑s=λ0λ−1+μ λ−s−1−μys=0, where zλ=aλ+bλΔμyλ, Δμ stands for the fractional difference operator in Riemann-Liouville settings and of order μ, 0<μ≤1, and η≥1 is a quotient of odd positive integers and λ∈ℕλ0+1−μ. New oscillation results are established by the help of certain inequalities, features of fractional operators, and the generalized Riccati technique. We verify the theoretical outcomes by presenting two numerical examples.


Author(s):  
Piotr Duch ◽  
Rafał Jachowicz ◽  
Sylwester Błaszczyk ◽  
Maciej Łaski ◽  
Adam Wulkiewicz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document