Core-shell particles for devising high-performance full-day radiative cooling paint

2021 ◽  
Vol 25 ◽  
pp. 101209
Author(s):  
Jie Huang ◽  
Mingzhang Li ◽  
Desong Fan
Author(s):  
Maria Mercedes De Zan

Chemometric optimization and validation of a method based on High Performance Liquid Chromatography (HPLC) using core – shell particles for the determination of Vancomycin (VMC) in human plasma is reported. The combination of the efficiency of the core-shell particles and the benefits of the design of experiments allowed the successful determination of VCM, even in presence of several interferents. Selectivity, linearity, accuracy and precision were accomplished according to the European Medicines Agency (EMA) guideline, within the concentration range of 1.00 – 60.0 μg/mL of VCM. It is noteworthy that this method requires small amount of sample and solvents, and the sample treatment is simple and no time-consuming. Thus, this method becomes a simple and high-throughput alternative to therapeutic drug monitoring in treated patients, as well as an analytical procedure that conforms to the principles of the green chemistry.


2021 ◽  
Vol 17 (3) ◽  
pp. 439-446
Author(s):  
Hongjun Xia ◽  
Huaiming Wang ◽  
Jianshan Wang ◽  
Lin Wang ◽  
Lin Jin ◽  
...  

As it is difficult to prevent secondary nucleation and agglomeration during the preparation of core–shell silica microspheres, these issues have been successfully resolved in this study using template-dissolution-induced redeposition. The non-porous particles are transformed into core–shell silica microspheres (CSSMs) in the presence of cetyltrimethylammonium bromide and octyltrimethylammonium bromide under basic conditions. The shell thickness and pore sizes of the CSSMs are controlled by adjusting the etching time and molar ratio of the template, respectively. The CSSMs are modified using octadecyltrimethylammonium chloride to separate the mixture of alkyl benzenes, and a high column separation efficiency is achieved within two minutes. The CSSMs are used for the separation and analysis of proteins and the digests of bovine serum albumin. The chromatographic column packed with core–shell particles affords a significantly higher separation efficiency than the commercial column. Therefore, as a chromatographic stationary phase, these core–shell particles can potentially be used for the fast separation of proteins, small solutes, and complex samples.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Raffaella Preti

The increased separation efficiency provided by the new technology of column packed with core-shell particles in high-performance liquid chromatography (HPLC) has resulted in their widespread diffusion in several analytical fields: from pharmaceutical, biological, environmental, and toxicological. The present paper presents their most recent applications in food analysis. Their use has proved to be particularly advantageous for the determination of compounds at trace levels or when a large amount of samples must be analyzed fast using reliable and solvent-saving apparatus. The literature hereby described shows how the outstanding performances provided by core-shell particles column on a traditional HPLC instruments are comparable to those obtained with a costly UHPLC instrumentation, making this novel column a promising key tool in food analysis.


2013 ◽  
Vol 1311 ◽  
pp. 90-97 ◽  
Author(s):  
A. Carl Sanchez ◽  
Gareth Friedlander ◽  
Szabolcs Fekete ◽  
Jason Anspach ◽  
Dvy Guillarme ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (15) ◽  
pp. 2849 ◽  
Author(s):  
Szabolcs Horváth ◽  
Fabrice Gritti ◽  
Róbert Kormány ◽  
Krisztián Horváth

Modern analytical applications of liquid chromatography require columns with higher and higher efficiencies. In this work, the general rate model (GRM) of chromatography is used for the analysis of the efficiency of core-shell phases having two porous layers with different structures and/or surface chemistries. The solution of the GRM in the Laplace domain allows for the calculation of moments of elution curves (retention time and peak width), which are used for the analysis of the efficiency of bi-layer particles with and without a non-porous core. The results demonstrate that bi-layer structures can offer higher separation power than that of the two layers alone if the inner layer has smaller surface coverage (retentivity) and the pore size and pore diffusion of the outer layer is either equal to or higher than that of the inner layer. Even in the case of core-shell phases, there is an increase in resolution by applying the bi-layer structure; however, we can always find a mono-layer core-shell particle structure with a larger core size that provides better resolution. At the optimal core size, the resolution cannot be further improved by applying a bi-layer structure. However, in case of the most widely produced general-purpose core-shell particles, where the core is ∼70% of the particle diameter, a 15–20% gain of resolution can be obtained by using well-designed and optimized bi-layer core-shell phases.


2016 ◽  
Vol 5 (4) ◽  
Author(s):  
Antonio Armentano ◽  
Simona Summa ◽  
Sonia Lo Magro ◽  
Pasquale D’Antini ◽  
Carmen Palermo ◽  
...  

A C18 column packed with core-shell particles was used for the chromatographic separation of sulphonamides in feed and meat by a conventional high performance liquid chromatography system coupled with a diode array detector. Two analytical methods, already used in our laboratory, have been modified without any changes in the extraction and clean-up steps and in the liquid chromatography instrumentation. Chromatographic conditions applied on a traditional 5-μm column have been optimized on a column packed with 2.6 μm core-shell particles. A binary mobile phase [acetate buffer solution at pH 4.50 and a mixture of methanol acetonitrile 50: 50 (v/v)] was employed in gradient mode at the flow rate of 1.2 mL with an injection volume of 6 μL. These chromatographic conditions allow the separation of 13 sulphonamides with an entire run of 13 minutes. Preliminary studies have been carried out comparing blanks and spiked samples of feed and meat. A good resolution and the absence of interferences were achieved in chromatograms for both matrices. Since no change was made to the sample preparation, the optimized method does not require a complete revalidation and can be used to make routine analysis faster.


Sign in / Sign up

Export Citation Format

Share Document