porous particles
Recently Published Documents


TOTAL DOCUMENTS

375
(FIVE YEARS 69)

H-INDEX

41
(FIVE YEARS 8)

2022 ◽  
Vol 116 (1) ◽  
pp. 28-34
Author(s):  
Jakub Karas ◽  
David Vetchý ◽  
Jan Gajdziok

The deposition of a drug to its required destination is crucial for effective lung treatment. It is important to design a suitable formulation that delivers the active ingredient to the desired site and resists the natural cleansing mechanisms of the airways. Large porous particles used as active substance carriers appear to be the most effective option for lung drug delivery. The present article provides a basic overview of the mechanisms of deposition of dry inhalable powders and methods of their preparation and evaluation. Spray drying together with micronization and crystallization techniques are among the most used methods of preparation of the discussed particles. Besides, these techniques can be combined with other production processes (encapsulation, emulsification, etc.). The evaluation of the properties of particles suitable for pulmonary application is based on specific requirements for their density, porosity, shape, aerodynamic parameters, and deposition in the lungs, which can now be simulated on an accurate model of artificial lungs.


2021 ◽  
Vol 931 ◽  
Author(s):  
S. Ahmerkamp ◽  
B. Liu ◽  
K. Kindler ◽  
J. Maerz ◽  
R. Stocker ◽  
...  

The settling velocity of porous particles in linear stratification is affected by the diffusive exchange between interstitial and ambient water. The extent to which buoyancy and interstitial mass adaptation alters the settling velocity depends on the ratio of the diffusive and viscous time scales. We conducted schlieren experiments and lattice Boltzmann simulations for highly porous (95 %) but impermeable spheres settling in linear stratification. For a parameter range that resembles marine porous particles, ‘marine aggregates’, i.e. low Reynolds numbers ( $0.05\leq \textit {Re}\leq 10$ ), intermediate Froude numbers ( $0.1\leq \textit {Fr}\leq 100$ ) and Schmidt number of salt ( $\textit {Sc}=700$ ), we observe delayed mass adaptation of the interstitial fluid due to lower-density fluid being dragged by a particle that forms a density boundary layer around the particle. The boundary layer buffers the diffusive exchange of stratifying agent with the ambient fluid, leading to an enhanced density contrast of the interstitial pore fluid. Stratification-related drag enhancement by means of additional buoyancy of dragging lighter fluid and buoyancy-induced vorticity resembles earlier findings for solid spheres. However, the exchange between density boundary layer and pore fluid substantially increases stratification drag for small $\textit {Fr}$ . To estimate the effect of stratification on marine aggregates settling in the ocean, we derived scaling laws and show that small particles ( $\leq$ 0.5 mm) experience enhanced drag which increases retention times by 10 % while larger porous particle (>0.5 mm) settling is dominated by delayed mass adaptation that diminishes settling velocity by 10 % up to almost 100 %. The derived relationships facilitate the integration of stratification-dependent settling velocities into biogeochemical models.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6011
Author(s):  
Jaroslaw Wozniak ◽  
Mateusz Petrus ◽  
Tomasz Cygan ◽  
Artur Lachowski ◽  
Marek Kostecki ◽  
...  

This paper discusses the effects of the environment and temperature of the Ti3C2 (MXene) oxidation process. The MXene powders were annealed at temperatures of 1000, 1200, 1400, 1600, and 1800 °C in argon and vacuum using a Spark Plasma Sintering (SPS) furnace. The purpose of the applied annealing method was to determine the influence of a high heating rate on the MXene degradation scheme. Additionally, to determine the thermal stability of MXene during the sintering of SiC matrix composites, SiC–C–B–Ti3C2 powder mixtures were also annealed. The process parameters were as follows: Temperatures of 1400 and 1600 °C, and pressure of 30 MPa in a vacuum. Observations of the microstructure showed that, due to annealing of the SiC–C–B–Ti3C2 powder mixtures, porous particles are formed consisting of TiC, Ti3C2sym, and amorphous carbon. The formation of porous particles is a transitional stage in the formation of disordered carbon structures.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2502
Author(s):  
Anna S. Vikulina ◽  
Jack Campbell

One of the undeniable trends in modern bioengineering and nanotechnology is the use of various biomolecules, primarily of a polymeric nature, for the design and formulation of novel functional materials for controlled and targeted drug delivery, bioimaging and theranostics, tissue engineering, and other bioapplications. Biocompatibility, biodegradability, the possibility of replicating natural cellular microenvironments, and the minimal toxicity typical of biogenic polymers are features that have secured a growing interest in them as the building blocks for biomaterials of the fourth generation. Many recent studies showed the promise of the hard-templating approach for the fabrication of nano- and microparticles utilizing biopolymers. This review covers these studies, bringing together up-to-date knowledge on biopolymer-based multilayer capsules and beads, critically assessing the progress made in this field of research, and outlining the current challenges and perspectives of these architectures. According to the classification of the templates, the review sequentially considers biopolymer structures templated on non-porous particles, porous particles, and crystal drugs. Opportunities for the functionalization of biopolymer-based capsules to tailor them toward specific bioapplications is highlighted in a separate section.


2021 ◽  
pp. 132590
Author(s):  
Min Ji Kim ◽  
Yeoung Jo Jeoung ◽  
Ho Yong Kim ◽  
So Young Kim ◽  
Jeong Yun Kim ◽  
...  

2021 ◽  
Vol 12 (2) ◽  
pp. 1721-1734

Fumonisins B1 and B2 are carcinogenic and commonly contaminate corn and corn-based products. Analysis of such toxins using C18 HPLC column is officially accredited but still unknown if all column types can effectively separate FB1 and FB2 or not. The present study evaluated the efficiency of 5 analytical columns with different dimensions, particle sizes, and porosities to determine these toxins in both agar cultures of Fusarium verticillioides and cornflakes. Interestingly, the traditional column 150mm of length with 5µm porous particles had close retention times to those of the short-fused core column 75mm of length with 2.7 µm reflecting in time and solvents saving. Using Sep-Pack C18 for clean-up played an important role in enhancement the limit of quantification (LOQ) for cornflake samples (5-13.7 and 16.1-39 µg kg-1 for FB1 and FB2, respectively). However, it was relatively higher for fungal culture samples that were not passed through the cleaning-up step (11.5-16 and 28.1-46.3 µg kg-1 for FB1 and FB2, respectively). Overall, the lowest LOQ was obtained using the shorter fused core column. Finally, using such clean-up in the extraction of FB1 and FB2 from spiked cornflakes samples gave good recoveries (>80%) using all tested columns.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 852
Author(s):  
Tuğrul Mert Serim ◽  
Jan Kožák ◽  
Annika Rautenberg ◽  
Ayşe Nurten Özdemir ◽  
Yann Pellequer ◽  
...  

Pharmacologically active macromolecules, such as peptides, are still a major challenge in terms of designing a delivery system for their transport across absorption barriers and at the same time provide sufficiently high long-term stability. Spray freeze dried (SFD) lyospheres® are proposed here as an alternative for the preparation of fast dissolving porous particles for nasal administration of insulin. Insulin solutions containing mannitol and polyvinylpyrrolidone complemented with permeation enhancing excipients (sodium taurocholate or cyclodextrins) were sprayed into a cooled spray tower, followed by vacuum freeze drying. Final porous particles were highly spherical and mean diameters ranged from 190 to 250 µm, depending on the excipient composition. Based on the low density, lyospheres resulted in a nasal deposition rates of 90% or higher. When tested in vivo for their glycemic potential in rats, an insulin-taurocholate combination revealed a nasal bioavailability of insulin of 7.0 ± 2.8%. A complementary study with fluorescently labeled-dextrans of various molecular weights confirmed these observations, leading to nasal absorption ranging from 0.7 ± 0.3% (70 kDa) to 10.0 ± 3.1% (4 kDa). The low density facilitated nasal administration in general, while the high porosity ensured immediate dissolution of the particles. Additionally, due to their stability, lyospheres provide an extremely promising platform for nasal peptide delivery.


Sign in / Sign up

Export Citation Format

Share Document