Modelling of hydraulic performance and wave energy extraction by a point absorber in heave

2004 ◽  
Vol 26 (1-2) ◽  
pp. 61-72 ◽  
Author(s):  
M. Vantorre ◽  
R. Banasiak ◽  
R. Verhoeven
Author(s):  
Erin E. Bachynski ◽  
Torgeir Moan

A combined wind and wave energy extraction device is studied, consisting of a single column tension leg platform (TLP) which supports a 5MW wind turbine (WT) and 3 point absorber wave energy converters (WECs). Two variations of the WECs are considered: one that is constrained to purely heave motion relative to the TLP hull, and a hinged device which moves in coupled surge and pitch as well as heave. The effects of both types of WECs on the WT power takeoff; on structural loads in the turbine tower and blades, WEC supporting structure, and tendons; and on the platform motions are examined for operational and 50-year extreme environmental conditions.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1731
Author(s):  
Dan Montoya ◽  
Elisabetta Tedeschi ◽  
Luca Castellini ◽  
Tiago Martins

Wave energy is nowadays one of the most promising renewable energy sources; however, wave energy technology has not reached the fully-commercial stage, yet. One key aspect to achieve this goal is to identify an effective control strategy for each selected Wave Energy Converter (WEC), in order to extract the maximum energy from the waves, while respecting the physical constraints of the device. Model Predictive Control (MPC) can inherently satisfy these requirements. Generally, MPC is formulated as a quadratic programming problem with linear constraints (e.g., on position, speed and Power Take-Off (PTO) force). Since, in the most general case, this control technique requires bidirectional power flow between the PTO system and the grid, it has similar characteristics as reactive control. This means that, under some operating conditions, the energy losses may be equivalent, or even larger, than the energy yielded. As many WECs are designed to only allow unidirectional power flow, it is necessary to set nonlinear constraints. This makes the optimization problem significantly more expensive in terms of computational time. This work proposes two MPC control strategies applied to a two-body point absorber that address this issue from two different perspectives: (a) adapting the MPC formulation to passive loading strategy; and (b) adapting linear constraints in the MPC in order to only allow an unidirectional power flow. The results show that the two alternative proposals have similar performance in terms of computational time compared to the regular MPC and obtain considerably more power than the linear passive control, thus proving to be a good option for unidirectional PTO systems.


Author(s):  
Christophe Cochet ◽  
Ronald W. Yeung

The wave-energy absorber being developed at UC Berkeley is modeled as a moored compound cylinder, with an outer cylinder sliding along a tension-tethered inner cylinder. With rigid-body dynamics, it is first shown that the surge and pitch degrees of freedom are decoupled from the heave motion. The heaving motion of the outer cylinder is analyzed and its geometric proportions (radii and drafts ratios) are optimized for wave-energy extraction. Earlier works of Yeung [1] and Chau and Yeung [2,3] are used in the present heave-motion study. The coupled surge-pitch motion can be solved and can provide the contact forces between the cylinders. The concept of capture width is used to characterize the energy extraction: its maximization leads to optimal energy extraction. The methodology presented provides the optimal geometry in terms of non-dimensional proportions of the device. It is found that a smaller radius and deeper draft for the outer cylinder will lead to a larger capture width and larger resulting motion.


2017 ◽  
Vol 143 ◽  
pp. 113-124 ◽  
Author(s):  
Zili Zhang ◽  
Bei Chen ◽  
Søren R.K. Nielsen ◽  
Jan Olsen

2015 ◽  
Vol 104 ◽  
pp. 370-386 ◽  
Author(s):  
Scott J. Beatty ◽  
Matthew Hall ◽  
Bradley J. Buckham ◽  
Peter Wild ◽  
Bryce Bocking

2021 ◽  
pp. 108767
Author(s):  
Ru Xi ◽  
Haicheng Zhang ◽  
DaolinXu ◽  
Huai Zhao ◽  
Ramnarayan Mondal

Sign in / Sign up

Export Citation Format

Share Document