scholarly journals Numerical simulations of flow around two tandem wall-mounted structures at high Reynolds numbers

2020 ◽  
Vol 99 ◽  
pp. 102124 ◽  
Author(s):  
Guang Yin ◽  
Martin Andersen ◽  
Muk Chen Ong
2018 ◽  
Vol 843 ◽  
pp. 156-179 ◽  
Author(s):  
Tiago S. Silva ◽  
Marco Zecchetto ◽  
Carlos B. da Silva

The scaling of the turbulent/non-turbulent interface (TNTI) at high Reynolds numbers is investigated by using direct numerical simulations (DNS) of temporal turbulent planar jets (PJET) and shear free turbulence (SFT), with Reynolds numbers in the range $142\leqslant Re_{\unicode[STIX]{x1D706}}\leqslant 400$. For $Re_{\unicode[STIX]{x1D706}}\gtrsim 200$ the thickness of the TNTI ($\unicode[STIX]{x1D6FF}_{\unicode[STIX]{x1D714}}$), like that of its two sublayers – the viscous superlayer (VSL, $\unicode[STIX]{x1D6FF}_{\unicode[STIX]{x1D708}}$) and the turbulent sublayer (TSL, $\unicode[STIX]{x1D6FF}_{\unicode[STIX]{x1D70E}}$) – all scale with the Kolmogorov micro-scale $\unicode[STIX]{x1D702}$, while the particular scaling constant depends on the sublayer. Specifically, for $Re_{\unicode[STIX]{x1D706}}\gtrsim 200$ while the VSL is always of the order of $\unicode[STIX]{x1D702}$, with $4\leqslant \langle \unicode[STIX]{x1D6FF}_{\unicode[STIX]{x1D708}}\rangle /\unicode[STIX]{x1D702}\leqslant 5$, the TSL and the TNTI are typically equal to $10\unicode[STIX]{x1D702}$, with $10.4\leqslant \langle \unicode[STIX]{x1D6FF}_{\unicode[STIX]{x1D70E}}\rangle /\unicode[STIX]{x1D702}\leqslant 12.5$, and $15.4\leqslant \langle \unicode[STIX]{x1D6FF}_{\unicode[STIX]{x1D714}}\rangle /\unicode[STIX]{x1D702}\leqslant 16.8$, respectively.


2018 ◽  
Vol 32 (29) ◽  
pp. 1850356 ◽  
Author(s):  
Xiaofeng Hu ◽  
Xinshu Zhang ◽  
Yunxiang You

The unsteady vortex-induced forces on a multi-column platform in current from subcritical up to supercritical Reynolds numbers have been investigated using three-dimensional numerical simulations. Two different current incidences, 0[Formula: see text] and 45[Formula: see text], are considered. The results show that for 0[Formula: see text] current incidence, the mean streamwise force coefficients [Formula: see text] increase with the rise of [Formula: see text] when [Formula: see text], while they grow slightly when [Formula: see text]. For 45[Formula: see text] current incidence, a decrease of streamwise force with increasing [Formula: see text] is observed. Similar to a single cylinder, the fluctuating transverse force coefficients [Formula: see text] of the multi-column platform drop at [Formula: see text] for 0[Formula: see text] and 45[Formula: see text] current incidences. In addition, it is found that for 0[Formula: see text] current incidence, the [Formula: see text] values of the downstream columns are much larger than those of the upstream columns, while for 45[Formula: see text] current incidence, the [Formula: see text] values of each column are similar. Furthermore, the results of correlations between the forces on each column and total forces indicates that for 0[Formula: see text] current incidence, the fluctuating transverse forces on the downstream columns are mainly responsible for the total fluctuating transverse force on the multi-column platform.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Mazyar Dawoodian ◽  
Abdolrahman Dadvand ◽  
Amir Hassanzadeh

The flow past a parachute with and without a vent hole at the top is studied both experimentally and numerically. The effects of Reynolds number and vent ratio on the flow behaviour as well as on the drag coefficient are examined. The experiments were carried out under free-flow conditions. In the numerical simulations, the flow was considered as unsteady and turbulent and was modelled using the standard - turbulence model. The experimental results reveal good agreement with the numerical ones. In both the experiments and numerical simulations, the Reynolds number was varied from 85539 to 357250 and the vent ratio was increased from zero to 20%. The results show that the drag coefficient decreases by increasing the Reynolds number for all the cases tested. In addition, it was found that at low and high Reynolds numbers, the parachutes, respectively, with 4% vent ratio and without vent are deemed more efficient. One important result of the present work is related to the effect of vent ratio on the stability of the parachute.


2012 ◽  
Vol 43 (5) ◽  
pp. 589-613
Author(s):  
Vyacheslav Antonovich Bashkin ◽  
Ivan Vladimirovich Egorov ◽  
Ivan Valeryevich Ezhov ◽  
Sergey Vladimirovich Utyuzhnikov

AIAA Journal ◽  
1999 ◽  
Vol 37 ◽  
pp. 1062-1071 ◽  
Author(s):  
A. Seifert ◽  
L. G. Pack

AIAA Journal ◽  
2000 ◽  
Vol 38 ◽  
pp. 825-834
Author(s):  
F. Novak ◽  
T. Sarpkaya

2004 ◽  
Author(s):  
William L. Keith ◽  
Kimberly M. Cipolla ◽  
David R. Hart ◽  
Deborah A. Furey

Author(s):  
Michael Maurer ◽  
Jens von Wolfersdorf ◽  
Michael Gritsch

An experimental and numerical study was conducted to determine the thermal performance of V-shaped ribs in a rectangular channel with an aspect ratio of 2:1. Local heat transfer coefficients were measured using the steady state thermochromic liquid crystal technique. Periodic pressure losses were obtained with pressure taps along the smooth channel sidewall. Reynolds numbers from 95,000 to 500,000 were investigated with V-shaped ribs located on one side or on both sides of the test channel. The rib height-to-hydraulic diameter ratios (e/Dh) were 0.0625 and 0.02, and the rib pitch-to-height ratio (P/e) was 10. In addition, all test cases were investigated numerically. The commercial software FLUENT™ was used with a two-layer k-ε turbulence model. Numerically and experimentally obtained data were compared. It was determined that the heat transfer enhancement based on the heat transfer of a smooth wall levels off for Reynolds numbers over 200,000. The introduction of a second ribbed sidewall slightly increased the heat transfer enhancement whereas the pressure penalty was approximately doubled. Diminishing the rib height at high Reynolds numbers had the disadvantage of a slightly decreased heat transfer enhancement, but benefits in a significantly reduced pressure loss. At high Reynolds numbers small-scale ribs in a one-sided ribbed channel were shown to have the best thermal performance.


Sign in / Sign up

Export Citation Format

Share Document