A large deformation finite element investigation of pile group installations with consideration of intervening consolidation

2021 ◽  
Vol 112 ◽  
pp. 102698
Author(s):  
Jiang Tao Yi ◽  
Fei Liu ◽  
Tai Bin Zhang ◽  
Kai Yao ◽  
Guo Zhen
2020 ◽  
Author(s):  
Bipul Hawlader ◽  
◽  
Chen Wang ◽  
Ripon Karmaker ◽  
Didier Perret ◽  
...  

Author(s):  
Yoshimichi Kawai ◽  
Shigeaki Tohnai ◽  
Shinichiro Hashimoto ◽  
Atsushi Sato ◽  
Tetsuro Ono

<p>Steel sheet shear walls with cold formed edge stiffened burring holes are applied to low- to mid-rise housings in seismically active and typhoon- or hurricane-prone regions. A configuration with burrs on the inside and smooth on the outside enables the construction of omitting the machining of holes for equipments and thinner walls with simplified attachments of finishings. In-plane shear experiments and finite element analyses revealed that the walls allowed shear stress to concentrate in intervals between the burring holes. The walls maintained stable shear load and large deformation behavior, and the deformation areas were limited in the intervals and a large out-of-plane waveform in a sheet was effectively prevented owing to edge stiffened burring ribs. The design methods are developed for evaluating the shear load of the walls at story angle from zero to 1/100, using the idea of decreasing the band width of the inclined tension fields on the intervals with the effects of the thickness.</p>


2014 ◽  
Vol 970 ◽  
pp. 177-184 ◽  
Author(s):  
Wen Chiet Cheong ◽  
Heng Keong Kam ◽  
Chan Chin Wang ◽  
Ying Pio Lim

A computational technique of rigid-plastic finite element method by using the Eulerian meshing method was developed to deal with large deformation problem in metal forming by replacing the conventional way of applying complicated remeshing schemes when using the Lagrange’s elements. During metal forming process, a workpiece normally undergoes large deformation and causes severe distortion of elements in finite element analysis. The distorted element may lead to instability in numerical calculation and divergence of non-linear solution in finite element analysis. With Eulerian elements, the initial elements are generated to fix into a specified analytical region with particles implanted as markers to form the body of a workpiece. The particles are allowed to flow between the elements after each deformation step to show the deforming pattern of material. Four types of cold forging and sheet metal clinching were conducted to investigate the effectiveness of the presented method. The proposed method is found to be effective by comparing the results on dimension of the final product, material flow behaviour and punch load versus stroke obtained from simulation and experiment.


Sign in / Sign up

Export Citation Format

Share Document