Air side heat transfer coefficients of discrete plate finned-tube heat exchangers with large fin pitch

2010 ◽  
Vol 30 (2-3) ◽  
pp. 174-180 ◽  
Author(s):  
Jong Min Choi ◽  
Yonghan Kim ◽  
Mooyeon Lee ◽  
Yongchan Kim
2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Hie Chan Kang ◽  
Se-Myong Chang

This study proposes an empirical correlation for laminar natural convection applicable to external circular finned-tube heat exchangers with wide range of configuration parameters. The transient temperature response of the heat exchangers was used to obtain the heat transfer coefficient, and the experimental data with their characteristic lengths are discussed. The data lie in the range from 1 to 1000 for Rayleigh numbers based on the fin spacing: the ratio of fin height to tube diameter ranges from 0.1 to 0.9, and the ratio of fin pitch to height ranges from 0.13 to 2.6. Sixteen sets of finned-tube electroplated with nickel–chrome were tested. The convective heat transfer coefficients on the heat exchangers were measured by elimination of the thermal radiation effect from the heat exchanger surfaces. The Nusselt number was correlated with a newly suggested composite curve formula, which converges to the quarter power of the Rayleigh number for a single cylinder case. The proposed characteristic length for the Rayleigh number is the fin pitch while that for the Nusselt number is mean flow length, defined as half the perimeter of the mean radial position inside the flow region bounded by the tube surface and two adjacent fins. The flow is regarded as laminar, which covers heat exchangers from a single horizontal cylinder to infinite parallel disks. Consequently, the result of curve fitting for the experimental data shows the reasonable physical interpretation as well as the good quantitative agreement with the correction factors.


1987 ◽  
Vol 109 (2) ◽  
pp. 388-391 ◽  
Author(s):  
E. M. Sparrow ◽  
M. A. Ansari

Measurements were made of the combined natural convection and radiation heat transfer from a horizontal finned tube situated in a vertical channel open at the top and bottom. In one set of experiments, both walls of the channel were heavily insulated, while in a second set of experiments, one of the insulated walls was replaced by an uninsulated metallic sheet. In general, the heat transfer coefficients were found to be lower with the metal wall in place, but only moderately. With the finned tube situated at the bottom of the channel, the differences in the heat transfer coefficients corresponding to the two types of walls were only a few percent. When the tube was positioned at the mid-height of the channel, larger differences were encountered, but in the practical range of Rayleigh numbers, the differences did not exceed 5 percent.


1981 ◽  
Vol 103 (4) ◽  
pp. 705-714 ◽  
Author(s):  
J. C. Biery

A new method is presented to predict heat transfer coefficients for gas flow normal to smooth and finned tube tanks with triangular pitch. A transformation from the actual tube bank to an equivalent equilateral triangular pitch infinite smooth tube bank (ETP-I-STB) is made. A function of Ch(Ch = NSTNPR2/3NRe0.4) versus (Xt D0)Δ, ratio of transverse pitch to tube diameter for the ETP-I-STB, was developed. The Ch for the equivalent ETP-I-STP then applies to the actual tube bank. The method works with circular finned tubes, smooth tubes, continuous finned tubes, and segmented finned tubes with any triangular pitch. Also, fair predictions were made for in-line tubes with high Reynolds numbers.


Author(s):  
Wenhai Li ◽  
Ken Alabi ◽  
Foluso Ladeinde

Over the years, empirical correlations have been developed for predicting saturated flow boiling [1–15] and condensation [16–30] heat transfer coefficients inside horizontal/vertical tubes or micro-channels. In the present work, we have examined 30 of these models, and modified many of them for use in compact plate-fin heat exchangers. However, the various correlations, which have been developed for pipes and ducts, have been modified in our work to make them applicable to extended fin surfaces. The various correlations have been used in a low-order, one-dimensional, finite-volume type numerical integration of the flow and heat transfer equations in heat exchangers. The NIST’s REFPROP database [31] is used to account for the large variations in the fluid thermo-physical properties during phase change. The numerical results are compared with Yara’s experimental data [32]. The validity of the various boiling and condensation models for a real plate-fin heat exchanger design is discussed. The results show that some of the modified boiling and condensation correlations can provide acceptable prediction of heat transfer coefficient for two-phase flows in compact plate-fin heat exchangers.


2000 ◽  
Author(s):  
Qiao Lin ◽  
Shuyun Wu ◽  
Yin Yuen ◽  
Yu-Chong Tai ◽  
Chin-Ming Ho

Abstract This paper presents an experimental investigation on MEMS impinging jets as applied to micro heat exchangers. We have fabricated MEMS single and array jet nozzles using DRIE technology, as well as a MEMS quartz chip providing a simulated hot surface for jet impingement. The quartz chip, with an integrated polysilicon thin-film heater and distributed temperature sensors, offers high spatial resolution in temperature measurement due to the low thermal conductivity of quartz. From measured temperature distributions, heat transfer coefficients are computed for single and array micro impinging jets using finite element analysis. The results from this study for the first time provide extensive data on spatial distributions of micro impinging-jet heat transfer coefficients, and demonstrate the viability of MEMS heat exchangers that use micro impinging jets.


Sign in / Sign up

Export Citation Format

Share Document