The Correlation of Heat Transfer Coefficients for the Laminar Natural Convection in a Circular Finned-Tube Heat Exchanger

2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Hie Chan Kang ◽  
Se-Myong Chang

This study proposes an empirical correlation for laminar natural convection applicable to external circular finned-tube heat exchangers with wide range of configuration parameters. The transient temperature response of the heat exchangers was used to obtain the heat transfer coefficient, and the experimental data with their characteristic lengths are discussed. The data lie in the range from 1 to 1000 for Rayleigh numbers based on the fin spacing: the ratio of fin height to tube diameter ranges from 0.1 to 0.9, and the ratio of fin pitch to height ranges from 0.13 to 2.6. Sixteen sets of finned-tube electroplated with nickel–chrome were tested. The convective heat transfer coefficients on the heat exchangers were measured by elimination of the thermal radiation effect from the heat exchanger surfaces. The Nusselt number was correlated with a newly suggested composite curve formula, which converges to the quarter power of the Rayleigh number for a single cylinder case. The proposed characteristic length for the Rayleigh number is the fin pitch while that for the Nusselt number is mean flow length, defined as half the perimeter of the mean radial position inside the flow region bounded by the tube surface and two adjacent fins. The flow is regarded as laminar, which covers heat exchangers from a single horizontal cylinder to infinite parallel disks. Consequently, the result of curve fitting for the experimental data shows the reasonable physical interpretation as well as the good quantitative agreement with the correction factors.

Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4525 ◽  
Author(s):  
Piccolo ◽  
Sapienza ◽  
Guglielmino

This paper investigates the thermal performance of thermoacoustic heat exchangers subjected to acoustically oscillating flows. The analysis is carried out by experimental measurements of the heat fluxes sustained by the ambient heat exchanger of a prime mover of the standing wave type. A home-made parallel-plate heat exchanger is considered for the study. The gas-side convection heat transfer coefficients expressed as Nusselt numbers are determined over a wide range of velocity amplitudes of the oscillating flow. The experimental results are then compared to the predictions of a number of theoretical models currently applied in thermoacoustics such as the time-average steady-flow equivalent (TASFE) model, the root mean square Reynolds number (RMS-Re) model, and the boundary layer conduction model. The comparison suggests that the boundary layer model performs better than the rms-Re and TASFE models in predicting the heat transfer coefficients in oscillating flows. The relative difference between the model predictions and the experimental data amounts to 19%. A new correlation law, based on regression of the experimental data, is also proposed.


Author(s):  
M. R. Salem ◽  
K. M. Elshazly ◽  
R. Y. Sakr ◽  
R. K. Ali

The present work experimentally investigates the characteristics of convective heat transfer in horizontal shell and coil heat exchangers in addition to friction factor for fully developed flow through the helically coiled tube (HCT). The majority of previous studies were performed on HCTs with isothermal and isoflux boundary conditions or shell and coil heat exchangers with small ranges of HCT configurations and fluid operating conditions. Here, five heat exchangers of counter-flow configuration were constructed with different HCT-curvature ratios (δ) and tested at different mass flow rates and inlet temperatures of the two sides of the heat exchangers. Totally, 295 test runs were performed from which the HCT-side and shell-side heat transfer coefficients were calculated. Results showed that the average Nusselt numbers of the two sides of the heat exchangers and the overall heat transfer coefficients increased by increasing coil curvature ratio. The average increase in the average Nusselt number is of 160.3–80.6% for the HCT side and of 224.3–92.6% for the shell side when δ increases from 0.0392 to 0.1194 within the investigated ranges of different parameters. Also, for the same flow rate in both heat exchanger sides, the effect of coil pitch and number of turns with the same coil torsion and tube length is remarkable on shell average Nusselt number while it is insignificant on HCT-average Nusselt number. In addition, a significant increase of 33.2–7.7% is obtained in the HCT-Fanning friction factor (fc) when δ increases from 0.0392 to 0.1194. Correlations for the average Nusselt numbers for both heat exchanger sides and the HCT Fanning friction factor as a function of the investigated parameters are obtained.


2000 ◽  
Vol 122 (3) ◽  
pp. 485-491 ◽  
Author(s):  
G. A. Holtzman ◽  
R. W. Hill ◽  
K. S. Ball

A numerical study of natural convection in an isosceles triangular enclosure with a heated horizontal base and cooled upper walls is presented. Nearly every previous study conducted on this subject to date has assumed that the geometric plane of symmetry is also a plane of symmetry for the flow. This problem is re-examined over aspect ratios ranging from 0.2 to 1.0 and Grashof numbers from 103 to 105. It is found that a pitchfork bifurcation occurs at a critical Grashof number for each of the aspect ratios considered, above which the symmetric solutions are unstable to finite perturbations and asymmetric solutions are instead obtained. Results are presented detailing the occurrence of the pitchfork bifurcation in each of the aspect ratios considered, and the resulting flow patterns are described. A flow visualization study is used to validate the numerical observations. Computed local and mean heat transfer coefficients are also presented and compared with results obtained when flow symmetry is assumed. Differences in local values of the Nusselt number between asymmetric and symmetric solutions are found to be more than 500 percent due to the shifting of the buoyancy-driven cells. [S0022-1481(00)02503-2]


2012 ◽  
Vol 33 (3) ◽  
pp. 1-24 ◽  
Author(s):  
Dawid Taler

Abstract This paper presents a numerical method for determining heat transfer coefficients in cross-flow heat exchangers with extended heat exchange surfaces. Coefficients in the correlations defining heat transfer on the liquid- and air-side were determined using a nonlinear regression method. Correlation coefficients were determined from the condition that the sum of squared liquid and air temperature differences at the heat exchanger outlet, obtained by measurements and those calculated, achieved minimum. Minimum of the sum of the squares was found using the Levenberg-Marquardt method. The uncertainty in estimated parameters was determined using the error propagation rule by Gauss. The outlet temperature of the liquid and air leaving the heat exchanger was calculated using the analytical model of the heat exchanger.


2006 ◽  
Vol 129 (9) ◽  
pp. 1277-1285 ◽  
Author(s):  
Qiu-wang Wang ◽  
Gong-nan Xie ◽  
Bo-tao Peng ◽  
Min Zeng

The heat transfer and pressure drop of three types of shell-and-tube heat exchangers, one with conventional segmental baffles and the other two with continuous helical baffles, were experimentally measured with water flowing in the tube side and oil flowing in the shell side. The genetic algorithm has been used to determine the coefficients of correlations. It is shown that under the identical mass flow, a heat exchanger with continuous helical baffles offers higher heat transfer coefficients and pressure drop than that of a heat exchanger with segmental baffles, while the shell structure of the side-in-side-out model offers better performance than that of the middle-in-middle-out model. The predicted heat transfer rates and friction factors by means of the genetic algorithm provide a closer fit to experimental data than those determined by regression analysis. The predicted corrections of heat transfer and flow performance in the shell sides may be used in engineering applications and comprehensive study. It is recommended that the genetic algorithm can be used to handle more complicated problems and to obtain the optimal correlations.


2009 ◽  
Vol 131 (9) ◽  
Author(s):  
André Felippe Vieira da Cunha ◽  
Marcia B. H. Mantelli

High temperature thermosyphons are devices designed to operate at temperatures above 400°C. They can be applied in many industrial applications, including heat recovery from high temperature air fluxes. After a short literature review, which shows a deficiency of models for liquid metal thermosyphons, an analytical model, developed to predict the temperature distribution and the overall thermal resistance, is shown. In this model, the thermosyphon is divided into seven regions: three regions for the condensed liquid, including the condenser, adiabatic region, and evaporator; one region for vapor; one for the liquid pool; one for the noncondensable gases; and another for the tube wall. The condensation phenomenon is modeled according to the Nusselt theory for condensation in vertical walls. Numerical methods are used to solve the resulting equations and to determine the temperature distribution in the tube wall. Ideal gas law is applied for the noncondensable gases inside the thermosyphon, while the evaporator and condenser heat transfer coefficients are obtained from literature correlations. Experimental tests are conducted for thermosyphon with mercury as working fluid, designed and constructed in the laboratory. The results for two thermosyphons with different geometry configurations are tested: one made of a finned tube in the condenser region and another of a smooth tube. The finned tube presents lower wall temperature levels when compared with the smooth tube. The experimental data are compared with the proposed model for two different liquid pool heat transfer coefficients. It is observed that the comparison between the experimental data and theoretical temperature profiles is good for the condenser region. For the evaporator, where two distinct regions are observed (liquid film and pool), the comparison is not so good, independent of the heat transfer coefficient used. In a general sense, the model has proved to be a useful tool for the design of liquid metal thermosyphons.


Author(s):  
Hie Chan Kang ◽  
Hyun Soon Jang

An experimental study has been conducted on natural convection heat transfer for seventeen kinds of circular finned tube heat exchanger. The transient method was used to obtain the heat transfer coefficient. The experimental data were presented and their characteristics lengths were discussed. The experimental data were presented and correlated in the ranges of 27 < RaDh < 2300, 1.2 < Do/Di < 2.8, and 0.12 < Pf/Di < 0.26. The Nusselt number correlated with the quarter power of the Rayleigh number, based on the hydraulic diameter, for the small diameter fins, the same as laminar natural convection; however, the correlation was with the half power for the large fin diameters and small fin pitches.


Sign in / Sign up

Export Citation Format

Share Document