Determination of the heat transfer coefficient at the metal–die interface for high pressure die cast AlSi9Cu3Fe

2011 ◽  
Vol 31 (17-18) ◽  
pp. 3996-4006 ◽  
Author(s):  
Alastair Long ◽  
David Thornhill ◽  
Cecil Armstrong ◽  
David Watson
Energy ◽  
2019 ◽  
Vol 175 ◽  
pp. 978-985 ◽  
Author(s):  
İlhan Ceylan ◽  
Sezayi Yilmaz ◽  
Özgür İnanç ◽  
Alper Ergün ◽  
Ali Etem Gürel ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 704
Author(s):  
Magdalena Jaremkiewicz ◽  
Jan Taler

This paper proposes an effective method for determining thermal stresses in structural elements with a three-dimensional transient temperature field. This is the situation in the case of pressure elements of complex shapes. When the thermal stresses are determined by the finite element method (FEM), the temperature of the fluid and the heat transfer coefficient on the internal surface must be known. Both values are very difficult to determine under industrial conditions. In this paper, an inverse space marching method was proposed for the determination of the heat transfer coefficient on the active surface of the thick-walled plate. The temperature and heat flux on the exposed surface were obtained by measuring the unsteady temperature in a small region on the insulated external surface of a pressure component that is easily accessible. Three different procedures for the determination of the heat transfer coefficient on the water-spray surface were presented, with the division of the plate into three or four finite volumes in the normal direction to the plate surface. Calculation and experimental tests were carried out in order to validate the method. The results of the measurements and calculations agreed very well. The computer calculation time is short, so the technique can be used for online stress determination. The proposed method can be applied to monitor thermal stresses in the components of the power unit in thermal power plants, both conventional and nuclear.


2013 ◽  
Vol 91 (12) ◽  
pp. 1034-1043 ◽  
Author(s):  
Ali Fguiri ◽  
Naouel Daouas ◽  
M-Sassi Radhouani ◽  
Habib Ben Aissia

The parallel hot wire technique is considered an effective and accurate means of experimental measurement of thermal conductivity. However, the assumptions of infinite medium and ideal infinitely thin and long heat source lead to some restrictions in the applicability of this technique. To make an effective experiment design, a numerical analysis should be carried out a priori, which requires a precise specification of the heating source strength and the heat transfer coefficient on the external surface. In this work, a more accurate physical and mathematical modeling of an experimental setup based on the parallel hot wire method is considered to estimate the two above-mentioned parameters from noisy temperature histories measured inside the material. Based on a sensitivity analysis, the heating source strength is estimated first using early time measurements. With such estimated value, determination of the heat transfer coefficient using temperatures measured at later times is then considered. The Levenberg–Marquardt (LM) method is successfully applied using a single experiment for the inverse solution of the two present parameter estimation problems. Estimates of this gradient-based deterministic method are validated with a stochastic method (Kalman filter). The effects of the measurement location, the heating duration, the measurement time step, and the LM parameter on the estimates and their associated confidence bounds are investigated. Used in the traditional fitting procedure of the parallel hot wire technique, the estimated heating source power provides a reasonable agreement between fitted and exact values of the thermal conductivity and the thermal diffusivity.


2019 ◽  
Vol 973 ◽  
pp. 9-14 ◽  
Author(s):  
Mikhail S. Chepchurov ◽  
Nikolay S. Lubimyi ◽  
Vladimir P. Voronenko ◽  
Daniel R. Adeniyi

The use of metal-polymers in the manufacture of mold-forming parts allows for the significant reduction in price and time used in manufacturing of parts. Using data on the thermal conductivity of metal-polymers in calculations of the cooling system of molds allows calculating the optimal cycle of obtaining the product. The authors propose a method of determining the coefficient of heat transfer of metal-polymers based on a die matrix, filled with aluminum. The chosen equipment or measuring tool by them, allows determining the heat transfer coefficient of the material in use. The values of the coefficient of heat transfer of the material in question, obtained in the course of the research can be use in different databases of applications used for modeling production by injection molding. The described method of determining the coefficient of heat transfer may be repeated for samples of metal-polymers.


Sign in / Sign up

Export Citation Format

Share Document