An experimental investigation into the integration of a jet-pump refrigeration cycle and a novel jet-spay thermal ice storage system

2013 ◽  
Vol 53 (2) ◽  
pp. 285-290 ◽  
Author(s):  
Ian W. Eames ◽  
Mark Worall ◽  
Shenyi Wu
2013 ◽  
Vol 21 (04) ◽  
pp. 1350029 ◽  
Author(s):  
MD. IMRAN HOSSEN KHAN ◽  
HASAN M. M. AFROZ

An experimental investigation has been carried out to know about the performance improvement of a household refrigerator using phase change material (PCM). PCMs are used as latent heat thermal storage system to enhance the heat transfer of the evaporator. PCM is located behind the five sides of the evaporator cabinet in which the evaporator coil is immersed. Water (melting point 0°C) and Eutectic solutions (melting point −5°C) are used as PCMs for this experiment at different thermal loads. Depending on the types of PCM and thermal load, around 20–27% COP improvement of the refrigeration cycle has been observed with PCM with respect to without PCM. With the increase of the quantity of PCM (0.003 to 0.00425 m3) COP increases about 6%. Between two different PCMs the COP improvement for Eutectic solution is higher than Water. The experimental results with PCM confirm that, depending on the thermal load and the types of PCM average compressor running time per cycle is reduced significantly and it is found about 2–36% as compared to without PCM.


2013 ◽  
Vol 671-674 ◽  
pp. 2515-2519
Author(s):  
Xue Mei Wang ◽  
Zhen Hai Wang ◽  
Xing Long Wu

This project aims to study the optimal control model of the ice-storage system which is theoretically close to the optimal control and also applicable to actual engineering. Using Energy Plus, the energy consumption simulation software, and the simple solution method of optimal control, researchers can analyze and compare the annual operation costs of the ice-storage air-conditioning system of a project in Beijing under different control strategies. Researchers obtained the power rates of the air-conditioning system in the office building under the conditions of chiller-priority and optimal contro1 throughout the cooling season. Through analysis and comparison, they find that after the implementation of optimal control, the annually saved power bills mainly result from non-design conditions, especially in the transitional seasons.


Sign in / Sign up

Export Citation Format

Share Document