Thin liquid film flow and heat transfer under spray impingement

2012 ◽  
Vol 48 ◽  
pp. 342-348 ◽  
Author(s):  
J.L. Xie ◽  
R. Zhao ◽  
F. Duan ◽  
T.N. Wong
2017 ◽  
Vol 11 ◽  
pp. 72-83 ◽  
Author(s):  
K. Avinash ◽  
N. Sandeep ◽  
Oluwole Daniel Makinde

The heat transfer in nanofluids plays a major role in solar energy, nuclear reactors, aerodynamics, etc. By keeping this in view, in this study, we investigated the flow and heat transfer nature of liquid film flow of ethylene glycol (EG)-Cu nanofluid in the presence of non-uniform heat source/sink. We considered the Jeffrey fluid model to investigate the flow and heat transfer behavior. The governing equations are transformed as ordinary differential equations with the aid of similarity variables. Numerical results are carried out by employing bvp5c Matlab package. The influence of pertinent parameters on velocity and temperature profiles along with the reduced Nusselt number is discussed with the help of graphs and tabular results. It is observed that the rising value of the non-uniform heat source/sink parameter acts like heat generators and regulates the thermal field. Rising the film thickness enhances the heat transfer rate.


Author(s):  
Mei Zheng ◽  
Wei Dong ◽  
Zhiqiang Guo ◽  
Guilin Lei

The runback water flow and heat transfer on the surface of aircraft components has an important influence on the design of anti-icing system. The aim of this paper is to investigate the water flow characteristics on anti-icing surface using numerical method. The runback water flow on the anti-icing surface, which is caused by the impinging supercooled droplets from the clouds, is driven by the aerodynamic shear forces and the pressure gradient around the components. This is a complex model of flow and heat transfer that considers flow field, super-cooled droplets impingement and runback water flow simultaneously. In this case of gas-liquid two phase flow, the Volume-of-Fluid (VOF) method is very suitable for the solution of thin liquid film flow so that it is applied to simulate the runback water flow on anti-icing surfaces in this paper. Meanwhile, the heat and mass transfer of the runback water flow are considered in the calculation using the User-Defined Functions (UDFs) in ANASYS FLUENT. The verification is conducted by the comparison with the results of the experimental measurement and the mathematical model calculation. The effect of the airflow velocity and contact angle on the water flow are also considered in the numerical simulation.


1999 ◽  
Vol 26 (1-2) ◽  
pp. 75-85 ◽  
Author(s):  
G. Leneweit ◽  
K. G. Roesner ◽  
R. Koehler

Sign in / Sign up

Export Citation Format

Share Document