In-cylinder pressure based real-time combustion control for reduction of combustion dispersions in light-duty diesel engines

2016 ◽  
Vol 99 ◽  
pp. 1183-1189 ◽  
Author(s):  
Jaesung Chung ◽  
Kyunghan Min ◽  
Seungsuk Oh ◽  
Myoungho Sunwoo
2017 ◽  
Vol 19 (3) ◽  
pp. 293-307 ◽  
Author(s):  
Hoon Cho ◽  
Brien Fulton ◽  
Devesh Upadhyay ◽  
Thomas Brewbaker ◽  
Michiel van Nieuwstadt

A real-time implementable, zero-dimensional model for predicting engine-out emissions of nitrogen oxides using in-cylinder pressure measurements is developed. The model is an extension of existing works in open literature that align well with the objectives of real-time implementation. The proposed model uses a simplified Zeldovich NOx mechanism that uses combustion-related parameters derived from simplified thermodynamic and combustion sub-models. The performance of the model is discussed for both a heavy-duty and a light-duty diesel engines. The model behavior is evaluated under input uncertainty so as to provide realistic performance bounds.


Energies ◽  
2017 ◽  
Vol 10 (3) ◽  
pp. 284 ◽  
Author(s):  
Seungha Lee ◽  
Youngbok Lee ◽  
Gyujin Kim ◽  
Kyoungdoug Min

Author(s):  
Jaesung Chung ◽  
Junhyeong Oh ◽  
Myoungho Sunwoo

This paper proposes a real-time combustion control algorithm using reconstructed in-cylinder pressure traces by principal component analysis (PCA). The PCA method reconstructs the in-cylinder pressure traces using the principal components of the in-cylinder pressure traces. It was shown that using only five principal components, we were able to reconstruct the in-cylinder pressure traces within 1% root mean squared percent error. Furthermore, the reconstructed in-cylinder pressure traces were validated to effectively reduce the cycle-to-cycle variations caused by the noise signals. As a result, the standard deviation of MFB50 which was calculated from the reconstructed in-cylinder pressure was reduced by 45%. Furthermore, this combustion parameter was applied to a real-time combustion control. Since variations of the control variables for the real-time combustion control were reduced, the control performances were enhanced.


Author(s):  
Ahmed Al-Durra ◽  
Marcello Canova ◽  
Stephen Yurkovich

Cylinder pressure is one of the most important parameters characterizing the combustion process in an internal combustion engine. The recent developments in engine control technologies suggest the use of cylinder pressure as a feedback signal for closed-loop combustion control. However, the sensors measuring in-cylinder pressure are typically subject to noise and offset issues, requiring signal processing methods to be applied to obtain a sufficiently accurate pressure trace. The signal conditioning implies a considerable computational burden, which ultimately limits the use of cylinder pressure sensing to laboratory testing, where the signal can be processed off-line. In order to enable closed-loop combustion control through cylinder pressure feedback, a real-time algorithm that extracts the pressure signal from the in-cylinder sensor is proposed in this study. The algorithm is based on a crank-angle based engine combustion of that predicts the in-cylinder pressure from the definition of a burn rate function. The model is then adapted to model-based estimation by applying an extended Kalman filter in conjunction with a recursive least-squares estimation scheme. The estimator is tested on a high-fidelity diesel engine simulator as well as on experimental data obtained at various operating conditions. The results obtained show the effectiveness of the estimator in reconstructing the cylinder pressure on a crank-angle basis and in rejecting measurement noise and modeling errors. Furthermore, a comparative study with a conventional signal processing method shows the advantage of using the derived estimator, especially in the presence of high signal noise (as frequently happens with low-cost sensors).


2021 ◽  
pp. 146808742110157
Author(s):  
Youngbok Lee ◽  
Seungha Lee ◽  
Kyoungdoug Min

Recently, there have been numerous efforts to cope with automotive emission regulations. Various strategies to reduce engine-out NOx emissions and proper after-treatment systems, such as selective catalytic reduction (SCR) and lean NOx trap (LNT), have been taken into account in the engine research field. In this study, real-time engine-out NOx prediction model was established where zero-dimensional NO and NO2 models were combined with in-cylinder pressure model. During the procedure for estimating NO and NO2 (NOx), a real-time prediction model of in-cylinder pressure was applied so that the inputs to the NOx prediction model could be provided only by the data acquired from the engine control unit (ECU). This implies that an in-cylinder pressure sensor is not necessarily required to properly predict the engine-out NOx in real time. The real-time NOx estimation model was validated through the worldwide harmonized light-duty vehicle test cycle (WLTC) without a pressure sensor, and the total NOx error during the mode was comparable with the total NOx error of the portable NOx sensor. This real-time NOx estimation model can ultimately contribute to minimizing tail-pipe NOx emissions by influencing both emission calibration at the engine design stage and the management of NOx after-treatment systems where NOx conversion efficiency is heavily affected by the NO2/NO ratio.


Sign in / Sign up

Export Citation Format

Share Document