A Model-Based Methodology for Real-Time Estimation of Diesel Engine Cylinder Pressure

Author(s):  
Ahmed Al-Durra ◽  
Marcello Canova ◽  
Stephen Yurkovich

Cylinder pressure is one of the most important parameters characterizing the combustion process in an internal combustion engine. The recent developments in engine control technologies suggest the use of cylinder pressure as a feedback signal for closed-loop combustion control. However, the sensors measuring in-cylinder pressure are typically subject to noise and offset issues, requiring signal processing methods to be applied to obtain a sufficiently accurate pressure trace. The signal conditioning implies a considerable computational burden, which ultimately limits the use of cylinder pressure sensing to laboratory testing, where the signal can be processed off-line. In order to enable closed-loop combustion control through cylinder pressure feedback, a real-time algorithm that extracts the pressure signal from the in-cylinder sensor is proposed in this study. The algorithm is based on a crank-angle based engine combustion of that predicts the in-cylinder pressure from the definition of a burn rate function. The model is then adapted to model-based estimation by applying an extended Kalman filter in conjunction with a recursive least-squares estimation scheme. The estimator is tested on a high-fidelity diesel engine simulator as well as on experimental data obtained at various operating conditions. The results obtained show the effectiveness of the estimator in reconstructing the cylinder pressure on a crank-angle basis and in rejecting measurement noise and modeling errors. Furthermore, a comparative study with a conventional signal processing method shows the advantage of using the derived estimator, especially in the presence of high signal noise (as frequently happens with low-cost sensors).

Author(s):  
Ahmed Al-Durra ◽  
Marcello Canova ◽  
Steve Yurkovich

Cylinder pressure is one of the most important parameters characterizing the combustion process in an internal combustion engine. The recent developments in piezoelectric pressure transducers and progress in on-line computational throughput facilitate the use of cylinder pressure as a feedback signal for engine combustion control. However, a typical production cylinder pressure sensor is subject to noise and offset issues that require signal processing methods, including averaging over several engine cycles, in order to extract a pressure trace sufficiently accurate for combustion characterization. This limits the application of cylinder pressure sensing to off-line applications. In order to enable closed-loop combustion control using cylinder pressure feedback, this study proposes a real-time estimation algorithm that extracts the pressure signal on a crank-angle basis. A simplified thermodynamic model for Diesel engine combustion is derived to predict the in-cylinder pressure. The model is then adapted to model-based estimation, by applying an Extended Kalman Filter in conjunction with a recursive least squares estimation. The resulting estimator is tested on a high-fidelity Diesel engine model for different operating conditions. The results obtained show the effectiveness of the estimator in reconstructing the cylinder pressure and in rejecting measurement noise and modeling errors.


Author(s):  
Ponti Fabrizio ◽  
Ravaglioli Vittorio ◽  
Cavina Nicolò ◽  
De Cesare Matteo

The increasing request for pollutant emissions reduction spawned a great deal of research in the field of combustion control and monitoring. As a matter of fact, newly developed low temperature combustion strategies for diesel engines allow obtaining a significant reduction both in particulate matter and NOx emissions, combining the use of high EGR rates with a proper injection strategy. Unfortunately, due to their nature, these innovative combustion strategies are very sensitive to in-cylinder thermal conditions. Therefore, in order to obtain a stable combustion, a closed-loop combustion control methodology is needed. Many works demonstrate that a closed-loop combustion control strategy can be based on real-time analysis of in-cylinder pressure trace that provides important information about the combustion process, such as start of combustion, center of combustion and torque delivered by each cylinder. Nevertheless, cylinder pressure sensors on-board installation is still uncommon, due to problems related to unsatisfactory measurement long term reliability and cost. This paper presents a newly developed approach that allows extracting information about combustion effectiveness through the analysis of engine vibrations. In particular, the developed methodology can be used to obtain an accurate estimation of the indicated quantities of interest combining the information provided by engine speed fluctuations measurement and by the signals coming from acceleration transducers mounted on the engine. This paper also reports the results obtained applying the whole methodology to a light-duty turbocharged common rail diesel engine.


Author(s):  
F. Ponti ◽  
V. Ravaglioli ◽  
N. Cavina ◽  
M. De Cesare

The increasing request for pollutant emissions reduction spawned a great deal of research in the field of combustion control and monitoring. As a matter of fact, newly developed low temperature combustion strategies for Diesel engines allow obtaining a significant reduction both in particulate matter and NOx emissions, combining the use of high EGR rates with a proper injection strategy. Unfortunately, due to their nature, these innovative combustion strategies are very sensitive to in-cylinder thermal conditions. Therefore, in order to obtain a stable combustion, a closed-loop combustion control methodology is needed. Many works demonstrate that a closed-loop combustion control strategy can be based on real-time analysis of in-cylinder pressure trace, that provides important information about the combustion process, such as start of combustion, center of combustion and torque delivered by each cylinder. Nevertheless, cylinder pressure sensors on-board installation is still uncommon, due to problems related to unsatisfactory measurement long term reliability and cost. This paper presents a newly developed approach that allows extracting information about combustion effectiveness through the analysis of engine vibrations. In particular, the developed methodology can be used to obtain an accurate estimation of the indicated quantities of interest combining the information provided by engine speed fluctuations measurement and by the signals coming from acceleration transducers mounted on the engine. This paper also reports the results obtained applying the whole methodology to a light-duty turbocharged Common Rail Diesel engine.


2019 ◽  
Vol 22 (1) ◽  
pp. 109-124 ◽  
Author(s):  
Ruixue C Li ◽  
Guoming G Zhu ◽  
Yifan Men

This article presents a control-oriented two-zone reaction-based zero-dimensional model to accurately describe the combustion process of a spark-ignited engine for real-time simulations, and the developed model will be used for model-based control design and validation. A two-zone modeling approach is adopted, where the combustion chamber is divided into the burned (reaction) and unburned (pre-mixed) zones. The mixture thermodynamic properties and individual chemical species in two zones are taken into account in the modeling process. Instead of using the conventional pre-determined Wiebe-based combustion model, a two-step chemical reaction model is utilized to predict the combustion process along with important thermodynamic parameters such as the mass-fraction-burned, in-cylinder pressure, temperatures, and individual species mass changes in both zones. Sensitivities of model parameters are analyzed during the model calibration process. As a result, one set of calibration parameters is used to predict combustion characteristics over all engine operating conditions studied in this article, which is the major advantage of the proposed method. Also, the proposed modeling approach is capable of modeling the combustion process under different air-to-fuel ratios, ignition timings, and exhaust-gas-recirculation rates for real-time simulations. As the by-product of the model, engine knock can also be predicted based on the Arrhenius integral in the unburned zone, which is valuable for model-based knock control. The proposed combustion model is intensively validated using the experimental data with a peak relative prediction error of 6.2% for the in-cylinder pressure.


Author(s):  
Peter G Dowell ◽  
Sam Akehurst ◽  
Richard D Burke

Accurate real-time engine models are an essential step to allow the development of control algorithms in parallel to the development of engine hardware using hardware-in-the-loop applications. A physics-based model of the engine high-pressure air path and combustion chamber is presented. The model was parameterised using data from a small set of carefully selected operating conditions for a 2.0 l diesel engine. The model was subsequently validated over the complete engine operating map with exhaust gas recirculation and without exhaust gas recirculation. A high level of fit was achieved with R2 values above 0.94 for the mean effective pressure and above 0.99 for the air flow rate. The model run time was then reduced for real-time application by using forward differencing and single-precision floating-point numbers and by calculating the in-cylinder prediction for only a single cylinder. A further improvement of 25% in the run time was achieved by improving the submodels, including the strategic use of one-dimensional and two-dimensional look-up tables with optimised resolution. The model exceeds the performance of similar models in the literature, achieving a crank angle resolution of 0.5° at 4000 r/min. This simulation step size still yields good accuracy in comparison with a crank angle resolution of 0.1° and was validated against the experimental results from a New European Driving Cycle. The real-time model allows the development of control strategies before the engine hardware is available, meaning that more time can be spent to ensure that the engine can meet the performance and the emissions requirements over its full operating range.


2014 ◽  
Vol 77 ◽  
pp. 193-207 ◽  
Author(s):  
A.P. Carlucci ◽  
D. Laforgia ◽  
S. Motz ◽  
R. Saracino ◽  
S.P. Wenzel

Author(s):  
Fabrizio Ponti ◽  
Vittorio Ravaglioli ◽  
Davide Moro ◽  
Matteo De Cesare

Newly developed Diesel engine control strategies are mainly aimed at pollutant emissions reduction, due to the increasing request for engine-out emissions and fuel consumption reduction. In order to reduce engine-out emissions, the development of closed-loop combustion control algorithms has become crucial. Modern closed-loop combustion control strategies are characterized by two main aspects: the use of high EGR rates (the goal being to obtain highly premixed combustions) and the control of the center of combustion. In order to achieve the target center of combustion, conventional combustion control algorithms correct the measured value by varying Main injection timing. It is possible to obtain a further reduction in pollutant emissions through a proper variation of the injection parameters. Modern Diesel engine injection systems allow designing injection patterns with many degrees of freedom, due to the large number of tuneable injection parameters (such as start and duration of each injection). Each injection parameter’s variation causes variations in the whole combustion process and, consequently, in pollutant emissions production. Injection parameters variations have a strong influence on other quantities that are related to combustion process effectiveness, such as noise radiated by the engine. This work presents a methodology that allows real-time evaluating combustion noise on-board a vehicle. The radiated noise can be evaluated through a proper in-cylinder pressure signal processing. Even though in-cylinder pressure sensor on-board installation is still uncommon, it is believed that in-cylinder pressure measurements will be regularly available on-board thanks to the newly developed piezo-resistive sensors. In order to set-up the methodology, several experimental tests have been performed on a 1.3 liter Diesel engine mounted in a test cell. The engine was run, in each operating condition, both activating and deactivating pre-injections, since pre-injections omission usually produces a decrease in pollutant emissions production (especially in particulate matter) and a simultaneous increase in engine noise. The investigation of the correlation between combustion process and engine noise can be used to set up a closed-loop algorithm for optimal combustion control based on engine noise prediction.


Author(s):  
Seungsuk Oh ◽  
Junsoo Kim ◽  
Byounggul Oh ◽  
Kangyoon Lee ◽  
Myoungho Sunwoo

An in-cylinder pressure-based control method is capable of improving engine performance, as well as reducing harmful emissions. However, this method is difficult to be implemented in a conventional engine management system due to the excessive data acquisition and long computation time. In this study, we propose a real-time indicated mean effective pressure (IMEP) estimation method using cylinder pressure in a common-rail direct injection diesel engine. In this method, difference pressure integral (DPI) was applied to the estimation. The DPI requires only 180 pressure data points during one engine cycle from top dead center to bottom dead center when pressure data are captured at every crank angle. Therefore, the IMEP can be estimated in real time. To further reduce the computational load, the IMEP was also estimated using DPI at 2 deg, 3 deg, and 4 deg crank angle resolutions. Furthermore, based on the estimated IMEP, we controlled IMEP using a radial basis function network and linear feedback controller. As a result of the study, successful estimation and control were demonstrated through engine experiments.


Author(s):  
Dimitrios T. Hountalas ◽  
Spiridon Raptotasios ◽  
Antonis Antonopoulos ◽  
Stavros Daniolos ◽  
Iosif Dolaptzis ◽  
...  

Currently the most promising solution for marine propulsion is the two-stroke low-speed diesel engine. Start of Injection (SOI) is of significant importance for these engines due to its effect on firing pressure and specific fuel consumption. Therefore these engines are usually equipped with Variable Injection Timing (VIT) systems for variation of SOI with load. Proper operation of these systems is essential for both safe engine operation and performance since they are also used to control peak firing pressure. However, it is rather difficult to evaluate the operation of VIT system and determine the required rack settings for a specific SOI angle without using experimental techniques, which are extremely expensive and time consuming. For this reason in the present work it is examined the use of on-board monitoring and diagnosis techniques to overcome this difficulty. The application is conducted on a commercial vessel equipped with a two-stroke engine from which cylinder pressure measurements were acquired. From the processing of measurements acquired at various operating conditions it is determined the relation between VIT rack position and start of injection angle. This is used to evaluate the VIT system condition and determine the required settings to achieve the desired SOI angle. After VIT system tuning, new measurements were acquired from the processing of which results were derived for various operating parameters, i.e. brake power, specific fuel consumption, heat release rate, start of combustion etc. From the comparative evaluation of results before and after VIT adjustment it is revealed an improvement of specific fuel consumption while firing pressure remains within limits. It is thus revealed that the proposed method has the potential to overcome the disadvantages of purely experimental trial and error methods and that its use can result to fuel saving with minimum effort and time. To evaluate the corresponding effect on NOx emissions, as required by Marpol Annex-VI regulation a theoretical investigation is conducted using a multi-zone combustion model. Shop-test and NOx-file data are used to evaluate its ability to predict engine performance and NOx emissions before conducting the investigation. Moreover, the results derived from the on-board cylinder pressure measurements, after VIT system tuning, are used to evaluate the model’s ability to predict the effect of SOI variation on engine performance. Then the simulation model is applied to estimate the impact of SOI advance on NOx emissions. As revealed NOx emissions remain within limits despite the SOI variation (increase).


Author(s):  
G. Hariharan ◽  
B. Kosanovic

The ability of modern power plant data acquisition systems to provide a continuous real-time data feed can be exploited to carry out interesting research studies. In the first part of this study, real-time data from a power plant is used to carry out a comprehensive heat balance calculation. The calculation involves application of the first law of thermodynamics to each powerhouse component. Stoichiometric combustion principles are applied to calculate emissions from fossil fuel consuming components. Exergy analysis is carried out for all components by the combined application of the first and second laws of thermodynamics. In the second part of this study, techniques from the field of System Identification and Linear Programming are brought together in finding thermoeconomically optimum plant operating conditions one step ahead in time. This is done by first using autoregressive models to make short-term predictions of plant inputs and outputs. Then, parameter estimation using recursive least squares is used to determine the relations between the predicted inputs and outputs. The estimated parameters are used in setting up a linear programming problem which is solved using the simplex method. The end result is knowledge of thermoeconomically optimum plant inputs and outputs one step ahead in time.


Sign in / Sign up

Export Citation Format

Share Document