Adsorption isotherms and kinetics of HFC-404A onto bituminous based granular activated carbon for storage and cooling applications

2016 ◽  
Vol 105 ◽  
pp. 639-645 ◽  
Author(s):  
Mohamed Ghazy ◽  
Ahmed A. Askalany ◽  
K. Harby ◽  
Mahmoud S. Ahmed
Adsorption ◽  
2015 ◽  
Vol 21 (1-2) ◽  
pp. 53-65 ◽  
Author(s):  
Yongchen Song ◽  
Wanli Xing ◽  
Yi Zhang ◽  
Weiwei Jian ◽  
Zhaoyan Liu ◽  
...  

2006 ◽  
Vol 71 (8-9) ◽  
pp. 957-967 ◽  
Author(s):  
Ljiljana Markovska ◽  
Vera Meshko ◽  
Mirko Marinkovski

The isotherms and kinetics of zinc adsorption from aqueous solution onto granular activated carbon (GAC) and natural zeolite were studied using an agitated batch adsorber. The maximum adsorption capacities of GAC and natural zeolite towards zinc(II) from Langmuir adsorption isotherms were determined using experimental adsorption equilibrium data. The homogeneous solid diffusion model (HSD-model) combined with external mass transfer resistance was applied to fit the experimental kinetic data. The kinetics simulation study was performed using a computer program based on the proposed mathematical model and developed using gPROMS. As the two-mass transfer resistance approach was applied, two model parameters were fitted during the simulation study. External mass transfer and solid phase diffusion coefficients were obtained to predict the kinetic curves for varying initial Zn(II) concentration at constant agitation speed and constant adsorbent mass. For any particular Zn(II) - adsorbent system, k f was constant, except for the lowest initial concentration, while D s was found to increase with increasing initial Zn(II) concentration.


Sign in / Sign up

Export Citation Format

Share Document