Exergoenvironmental and exergoeconomic analyses of a vertical type ground source heat pump integrated wall cooling system

2016 ◽  
Vol 102 ◽  
pp. 904-921 ◽  
Author(s):  
Ugur Akbulut ◽  
Zafer Utlu ◽  
Olcay Kincay
2019 ◽  
Vol 11 (8) ◽  
pp. 2199 ◽  
Author(s):  
Stefan Blomqvist ◽  
Lina La Fleur ◽  
Shahnaz Amiri ◽  
Patrik Rohdin ◽  
Louise Ödlund (former Trygg)

In Sweden, 90% of multifamily buildings utilize district heat and a large portion is in need of renovation. The aim is to analyze the impact of renovating a multifamily building stock in a district heating and cooling system, in terms of primary energy savings, peak power demands, electricity demand and production, and greenhouse gas emissions on local and global levels. The study analyzes scenarios regarding measures on the building envelope, ventilation, and substitution from district heat to ground source heat pump. The results indicate improved energy performance for all scenarios, ranging from 11% to 56%. Moreover, the scenarios present a reduction of fossil fuel use and reduced peak power demand in the district heating and cooling system ranging from 1 MW to 13 MW, corresponding to 4–48 W/m2 heated building area. However, the study concludes that scenarios including a ground source heat pump generate significantly higher global greenhouse gas emissions relative to scenarios including district heating. Furthermore, in a future fossil-free district heating and cooling system, a reduction in primary energy use will lead to a local reduction of emissions along with a positive effect on global greenhouse gas emissions, outperforming measures with a ground source heat pump.


2015 ◽  
Vol 64 ◽  
pp. 113-119 ◽  
Author(s):  
Weiqiao Yang ◽  
Xihong Li ◽  
Xia Liu ◽  
Yibin Zhang ◽  
Kai Gao ◽  
...  

Author(s):  
D. Birks ◽  
C. Adamson ◽  
M. G. Woods ◽  
G. Holmes

A case study documenting the development of a groundwater-fed district heat network in Colchester, UK, is presented. The performance of an open loop groundwater heating and cooling system (also known as a ground source heat pump (GSHP)) is a function of the performance of individual boreholes and interactions between the boreholes. When performance does not meet its design capacity or decreases with time, various measures can be undertaken to improve either the performance of individual wells or the performance of the system as a whole.Output from the first exploration borehole was less than expected, placing the business case for the development in jeopardy. Consequently, refinements to the remainder of the drilling programme were implemented including three to improve the performance of individual wells and two to improve performance of the system in its entirety. Results of these refinements are presented and may be used to inform the design of new open loop groundwater heat pump systems (GSHPs) and/or the rehabilitation of existing systems that have experienced diminished performance.Yields from three wells drilled using the reverse circulation method were more than double those drilled with the direct water flush method. A significant improvement in the performance of abstraction wells due to reinjection was observed. Specific capacity in abstraction wells increased by c. 40% due to reinjection, where the distance between abstraction and reinjection locations was 535–717 m. Allowing an excess pressure of up to 0.2 MPa in the reinjection boreholes meant that reinjection could be achieved with fewer wells.Outputs from abstraction wells were not increased by extending the depth of boreholes from 135 to 200 m or implementing additional acid treatments.


Sign in / Sign up

Export Citation Format

Share Document