Conjugate heat transfer by oscillating flow in a parallel-plate channel subject to a sinusoidal wall temperature distribution

2017 ◽  
Vol 123 ◽  
pp. 1462-1472 ◽  
Author(s):  
Jaeyeong Jo ◽  
Sung Jin Kim
1965 ◽  
Vol 32 (3) ◽  
pp. 684-689 ◽  
Author(s):  
E. M. Sparrow ◽  
J. B. Starr

Consideration is given to the fully developed heat-transfer characteristics of laminar flows in converging and diverging plane-walled passages. The analysis is carried out for the two fundamental thermal boundary conditions of prescribed wall heat flux and prescribed wall temperature. As a prelude to the heat-transfer analysis, a new solution for the velocity distribution is derived on the basis of a linearized momentum equation. The Nusselt number for flow in tapered passages is found to depend on the Reynolds number; this is in contrast to the situation for passages of longitudinally unchanging cross section wherein the Nusselt number is independent of the Reynolds number. In general, the Nusselt number for flow in a plane-walled diverging passage falls below that for the parallel-plate channel, while the Nusselt number for a converging flow is usually higher than that for a parallel-plate channel. Moreover, the fully developed Nusselt numbers for prescribed wall heat flux exceed those for prescribed wall temperature.


Author(s):  
Devendra Kumar ◽  
B. Satyanarayana ◽  
Rajesh Kumar ◽  
Bholey Singh ◽  
R. K. Shrivastava

The present study deals with two layered MHD immiscible fluid flow through porous medium in presence of heat transfer through parallel plate channel. The fluids are incompressible, and flow is fully developed. The fluids are of different viscosities and thermal conductivities so flowing without mixing each other. Two different phases are accounted for study and are electrically conducting. Temperature of the walls of parallel plate channel is constant. Rheological properties of the immiscible fluids are constant in nature. The flow is governed by coupled partial differential equations which are converted to ordinary differential equations and exact solutions are obtained. The velocity profile and temperature distribution are evaluated and solved numerically for different heights and viscosity ratios for the two immiscible fluids. The effect of magnetic field parameter M and porosity parameter K is discussed for velocity profile and temperature distribution. Combined effects of porous medium and magnetic fields are accelerating the flow which, can be helpful in draining oil from oil wells.


Sign in / Sign up

Export Citation Format

Share Document