Heat transfer for laminar slip flow of a rarefied gas in a parallel-plate channel or a circular tube with uniform wall temperature

Solar Energy ◽  
1965 ◽  
Vol 9 (3) ◽  
pp. 168 ◽  
2013 ◽  
Vol 561 ◽  
pp. 460-465
Author(s):  
Dong Hui Zhang ◽  
Jiao Gao

The objective of this paper is to study the characteristic of a circular tube with a built-in arc belt on fluid flow and heat transfer in uniform wall temperature flows. Numerical simulations for hydrodynamically laminar flow was direct ran at Re between 600 and 1800. Preliminary results on velocity and temperature statistics for uniform wall temperature show that, arc belt can swirl the pipe fluid, so that the fluid at the center of the tube and the fluid of the boundary layer of the wall can mix fully, and plays the role of enhanced heat transfer, but also significantly increases the resistance of the fluid and makes the resistance coefficient of the enhanced tube greater than smooth tube. The combination property PEC is all above 1.5.


1962 ◽  
Vol 84 (4) ◽  
pp. 363-369 ◽  
Author(s):  
E. M. Sparrow ◽  
S. H. Lin

The effects of low-density phenomena on the fully developed heat-transfer characteristics for laminar flow in tubes has been studied analytically. Consideration is given to the slip-flow regime wherein the major rarefaction effects are manifested as velocity and temperature jumps at the tube wall. The analysis is carried out for both uniform wall temperature and uniform wall heat flux. In both cases, the slip-flow Nusselt numbers are lower than those for continuum flow and decrease with increasing mean free path. Extension of the results is made to include the effects of shear work at the wall, temperature jump modifications for a moving fluid, and thermal creep.


Author(s):  
Cem Dolu ◽  
Lu¨tfullah Kuddusi

First and second order slip flow models in rectangular microchannels heated at constant and uniform wall temperature are studied. The velocity and temperature profiles for hydrodynamically and thermally developed incompressible slip flow regime available in literature are used. The average nondimensional slip velocity and temperature jump are found by using first and second order slip flow models. The average Nusselt number is also derived by using both first and second order slip flow models. The effects of Knudsen number, aspect ratio and second order slip flow model on the heat transfer characteristics of microchannel are explored.


Sign in / Sign up

Export Citation Format

Share Document