Numerical analysis of heat transfer processes in a low-cost, high-performance ice storage device for residential applications

2018 ◽  
Vol 128 ◽  
pp. 453-463 ◽  
Author(s):  
Andrea Mammoli ◽  
Matthew Robinson
2017 ◽  
Vol 38 ◽  
pp. 492-499 ◽  
Author(s):  
G. Kanellopoulos ◽  
V.G. Koutsomarkos ◽  
K.J. Kontoleon ◽  
K. Georgiadis-Filikas

2018 ◽  
Vol 7 (4.10) ◽  
pp. 278 ◽  
Author(s):  
Bhavani S ◽  
Shanmugan. S ◽  
Selvaraju P

In this work has been made to predict the effect of several parameters on the productivity to a system by expending fuzzy set technique. A solar cooker has been developed low cost and critically high efficiency produce in Vel Tech Multitech Engineering College at Chennai, Tamilnadu, India. Dissects in thermal performance of cooking system have been produced heat transfer follow in fuzzy logic techniques (Low, Medium, and High). The thermal effect of factor should be developed in fuzzy logic for the system. They should have groups of heat transfer produced in fuzzy logic controller for solar cooker system which had been implemented of system performance discussed. It is to study have induced to give the shortly time for the enhancement of the box solar cooker production.  


Author(s):  
Shankar Krishnan ◽  
Steve Leith ◽  
Terry Hendricks

Gas and air-side heat transfer is ubiquitous throughout many technological sectors, including HVAC (heating, ventilating, and air conditioning) systems, thermo-electric power generators and coolers, renewable energy, electronics and vehicle cooling, and forced-draft cooling in the petrochemical and power industries. The poor thermal conductivity and low heat capacity of air causes air-side heat transfer to typically dominate heat transfer resistance even with the use of extended area structures. In this paper, we report design, analysis, cost modeling, fabrication, and performance characterization of micro-honeycombs for gas-side heat transfer augmentation in thermoelectric (TE) cooling and power systems. Semi-empirical model aided by experimental validation was undertaken to characterize fluid flow and heat transfer parameters. We explored a variety of polygonal shapes to optimize the duct shape for air-side heat transfer enhancement. Predictions using rectangular micro-honeycomb heat exchangers, among other polygonal shapes, suggest that these classes of geometries are able to provide augmented heat transfer performance in high-temperature energy recovery streams and low-temperature cooling streams. Based on insight gained from theoretical models, rectangular micro-honeycomb heat exchangers that can deliver high performance were fabricated and tested. High- and low-cost manufacturing prototype designs with different thermal performance expectations were fabricated to explore the cost-performance design domain. Simple metrics were developed to correlate heat transfer performance with heat exchanger cost and weight and define optimum design points. The merits of the proposed air-side heat transfer augmentation approach are also discussed within the context of relevant thermoelectric power and cooling systems.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1554
Author(s):  
Na Zhou ◽  
Xuefeng Ding ◽  
Hongbo Li ◽  
Yue Ni ◽  
Yonglong Pu ◽  
...  

A thermopile detector with their thermocouples distributed in micro-bridges is designed and investigated in this work. The thermopile detector consists of 16 pairs of n-poly-Si/p-poly-Si thermocouples, which are fabricated using a low-cost, high-throughput CMOS process. The micro-bridges are realized by forming micro trenches at the front side first and then releasing the silicon substrate at the back side. Compared with a thermopile device using a continuous membrane, the micro-bridge-based one can achieve an improvement of the output voltage by 13.8% due to a higher temperature difference between the hot and cold junctions as there is a decrease in thermal conduction loss in the partially hollowed structure. This technique provides an effective way for developing high-performance thermopile detectors and other thermal devices.


Volume 4 ◽  
2004 ◽  
Author(s):  
M. J. Morales ◽  
S. A. Sherif

The purpose of this study is to investigate how the heat exchanger inventory allocation plays a role in maximizing the thermal performance of a two-stage refrigeration system with two evaporators. First, the system is modeled as a Carnot refrigerator and a particular heat transfer parameter is kept constant as the heat exchanger allocation parameter is allowed to vary. The value of the heat exchanger allocation parameter corresponding to the maximum coefficient of performance (COP) is noted. The results are compared to those of a non-Carnot refrigerator with isentropic and non-isentropic compression. It is found that the Carnot refrigerator can be used to predict the value of the heat exchanger allocation parameter where the maximum COP occurs for a non-Carnot refrigerator. In order to improve the accuracy of that prediction, the predicted value of the heat exchanger allocation parameter has to be inputted into the set of equations used for the non-Carnot refrigerator. This study is useful in designing a low cost, high-performance refrigeration system.


Author(s):  
Ed Walsh ◽  
Ronan Grimes ◽  
Patrick Walsh ◽  
Jason Stafford

The need for low profile, sustainable thermal management solutions is becoming a critical need in electronics from consumer products to server cabinets. This work presents a FINLESS thermal management solution that utilises fluidic structures generated within it to enhance the heat transfer performance. The FINLESS thermal management solution can be manufactured to have a height of ∼5mm or even less when using low profile motors. Particle Image Velocimetry (PIV) combined with Infra-Red (IR) imaging techniques are used to explain the underlying flow physics that results in increased heat transfer rates compared to typical laminar flows. It is found that the local heat transfer coefficients in the finless design are up to 300% greater than those achieved at the same Reynolds number using conventional boundary layer theory. The additional benefits in terms of sustainability of the approach are also highlighted.


2020 ◽  
Vol 12 (6) ◽  
pp. 2292
Author(s):  
Pei Cai ◽  
Youxue Jiang ◽  
He Wang ◽  
Liangyu Wu ◽  
Peng Cao ◽  
...  

The theoretical model of the solidification process of a shell-and-tube ice storage (STIS) device with longitudinal fins is established. The liquid fraction, the energy-discharging rate and the ice storage ratio are investigated, with particular focus on the effects of the fin structure parameters on the solidification process. Furthermore, the temperature and the streamline distributions are discussed to reveal the mechanism of the solidification process in the STIS device and the negative effect of natural convection (NC). It is indicated that the solidification process of the STIS device is dominated by the heat transfer via the fins at the beginning, and then by the heat transfer at the water–ice interface. The ice storage is negatively affected by the NC, for the reason that the water with a higher temperature stays in the lower part of the STIS device and the temperature gradient at the water–ice interface is small. The ice storage performance can be enhanced by increasing the fin structure parameters, including height, thickness and number.


Sign in / Sign up

Export Citation Format

Share Document