Experimental research on the property of water source gas engine-driven heat pump system with chilled and hot water in summer

2020 ◽  
Vol 165 ◽  
pp. 114532 ◽  
Author(s):  
Feng-Guo Liu ◽  
Zhong-Yun Tian ◽  
Zhen-Xi Ma ◽  
Lei-Lei Jia ◽  
Rui Zhang ◽  
...  
2014 ◽  
Vol 521 ◽  
pp. 56-59
Author(s):  
Hui Xing Li ◽  
Peng Cheng ◽  
Guo Hui Feng ◽  
Ran Zhang

New energy development and utilization is an important approach to solve the problem of energy shortage,a new type of composite heating system is proposed in this study. It expounds the research ideas, the technical principle and operation plan of the system. Through a comparative analysis of the performance coefficient of composite heating system, reclaimed water source heat pump system and solar hot water heating system, it Comes to the conclusions that the composite heating system can not only reduce the operating cost but also improve the running performance of reclaimed water source heat pump and reduce the heat loss of solar hot water heating system.


2020 ◽  
Vol 178 ◽  
pp. 115494
Author(s):  
Zhongyun Tian ◽  
Fengguo Liu ◽  
Changfei Tian ◽  
Zhenxi Ma ◽  
Leilei Jia ◽  
...  

2013 ◽  
Vol 325-326 ◽  
pp. 379-383
Author(s):  
Jian Lv ◽  
Xiao Hong Ma ◽  
Shu Ai Zhen ◽  
Ying Zhang

Through testing the operation of solar energy-water source heat pump hot water system, analysis of the factors that affect system performance, research engineering optimization strategies for improving systems performance. Given some optimization recommendations for both solar energy system and water source heat pump system. Provide some supports for this new technology which use renewable energy in the future development.


HortScience ◽  
1994 ◽  
Vol 29 (4) ◽  
pp. 249a-249
Author(s):  
Eric A. Lavoie ◽  
Damien de Halleux ◽  
André Gosselin ◽  
Jean-Claude Dufour

The main objective of this research was to produce a simulated model that permitted the evaluation of operating costs of commercial greenhouse tomato growers with respect to heating methods (hot air, hot water, radiant and heat pumps) and the use of artificial lighting for 1991 and 1992. This research showed that the main factors that negatively influence profitability were energy consumption during cold periods and the price of tomatoes during the summer season. The conventional hot water system consumed less energy than the heat pump system and produced marketable fruit yields similar to those from the heat pump system. The hot water system was generally more profitable in regards to energy consumption and productivity. Moreover, investment costs were less; therefore, this system gives best overall financial savings. As for radiant and hot air systems, their overall financial status falls between that of the hot water system and the heat pump. The radiant system proved to be more energy efficient that the hot air system, but the latter produced a higher marketable fruit yield over the 2-year study.


2011 ◽  
Vol 356-360 ◽  
pp. 2329-2332
Author(s):  
Shu Qin Gao ◽  
Yu Ming Feng

Water source heat pump system(WSHPS) is a new energy saving and environmentally air conditioning system, its degree of influence to groundwater related to the feasibility of construction of WSHPS and development & protection of regional groundwater. After introducing WSHPS, this paper analyzed the influence of WSHPS to groundwater, brought up the protection method to reduce influence. At last, a case study of new campus of Taiyuan university was carried out. The results showed that running of WSHPS won’t bring up disadvantage to groundwater environment.


2021 ◽  
Author(s):  
Toktam Saeid

In October 2009, Team North competed in the US DOE 2009 Solar Decathlon competition. Team North's mission was to design and deliver North House, an energy efficient solar-powered home while training Canada's next generation of leaders in sustainable design. In North House, the PV system on the roof was the primary energy generation, complimented by a custom PV cladding system on the south, east and west facades. A solar assisted heat pump system, including a three-tank heat transfer and storage system, the horizontally mounted evacuated-tube solar thermal collectors on the roof and a variable capacity heat pump met the hot water and space heating demands. A second variable capacity heat pump was utilized for space cooling. The solar thermal system was studied using TRNSYS simulation. For the initial assessments the simulations were run for Baltimore. Then, the analyses were extended to different cities across Canada. In all scenarios the same house was linked to the system. The minimum annual solar fraction of the different cities was 64% and it rose up to 81%. Finally, the data measured during the competition were analyzed and compared with the data resulting from the simulation. According to competition measures, during the 10 days of competition in Washington DC, the PV system generated 271.6kWh of electricity and the solar thermal system produced 91.7kWh while the house consumption was 294.1kWh. As a result, North House was evidently a net-positive house.


2011 ◽  
Vol 374-377 ◽  
pp. 398-404 ◽  
Author(s):  
Ying Ning Hu ◽  
Ban Jun Peng ◽  
Shan Shan Hu ◽  
Jun Lin

A hot-water and air-conditioning (HWAC) combined ground sourse heat pump(GSHP) system with horizontal ground heat exchanger self-designed and actualized was presented in this paper. The heat transfer performance for the heat exchanger of two different pipe arrangements, three layers and four layers, respectively, was compared. It showed that the heat exchange quantity per pipe length for the pipe arrangement of three layers and four layers are 18.0 W/m and 15.0 W/m. The coefficient of performance (COP) of unit and system could remain 4.8 and 4.2 as GSHP system for heating water, and the COP of heating and cooling combination are up to 8.5 and 7.5, respectively. The power consumption of hot-water in a whole year is 9.0 kwh/t. The economy and feasibility analysis on vertical and horizontal ground heat exchanger were made, which showed that the investment cost per heat exchange quantity of horizontal ground heat exchanger is 51.4% lower than that of the vertical ground heat exchanger, but the occupied area of the former is 7 times larger than the latter's.


Sign in / Sign up

Export Citation Format

Share Document