Experimental Study of Heating-Cooling Combined Ground Source Heat Pump System with Horizontal Ground Heat Exchanger

2011 ◽  
Vol 374-377 ◽  
pp. 398-404 ◽  
Author(s):  
Ying Ning Hu ◽  
Ban Jun Peng ◽  
Shan Shan Hu ◽  
Jun Lin

A hot-water and air-conditioning (HWAC) combined ground sourse heat pump(GSHP) system with horizontal ground heat exchanger self-designed and actualized was presented in this paper. The heat transfer performance for the heat exchanger of two different pipe arrangements, three layers and four layers, respectively, was compared. It showed that the heat exchange quantity per pipe length for the pipe arrangement of three layers and four layers are 18.0 W/m and 15.0 W/m. The coefficient of performance (COP) of unit and system could remain 4.8 and 4.2 as GSHP system for heating water, and the COP of heating and cooling combination are up to 8.5 and 7.5, respectively. The power consumption of hot-water in a whole year is 9.0 kwh/t. The economy and feasibility analysis on vertical and horizontal ground heat exchanger were made, which showed that the investment cost per heat exchange quantity of horizontal ground heat exchanger is 51.4% lower than that of the vertical ground heat exchanger, but the occupied area of the former is 7 times larger than the latter's.

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1893
Author(s):  
Kwonye Kim ◽  
Jaemin Kim ◽  
Yujin Nam ◽  
Euyjoon Lee ◽  
Eunchul Kang ◽  
...  

A ground source heat pump system is a high-performance technology used for maintaining a stable underground temperature all year-round. However, the high costs for installation, such as for boring and drilling, is a drawback that prevents the system to be rapidly introduced into the market. This study proposes a modular ground heat exchanger (GHX) that can compensate for the disadvantages (such as high-boring/drilling costs) of the conventional vertical GHX. Through a real-scale experiment, a modular GHX was manufactured and buried at a depth of 4 m below ground level; the heat exchange rate and the change in underground temperatures during the GHX operation were tracked and calculated. The average heat exchanges rate was 78.98 W/m and 88.83 W/m during heating and cooling periods, respectively; the underground temperature decreased by 1.2 °C during heat extraction and increased by 4.4 °C during heat emission, with the heat pump (HP) working. The study showed that the modular GHX is a cost-effective alternative to the vertical GHX; further research is needed for application to actual small buildings.


2019 ◽  
Vol 282 ◽  
pp. 02027
Author(s):  
Hauke Hirsch ◽  
Hans Petzold ◽  
John Grunewald

We conducted numerical simulations of a heat pump system connected to a horizontal ground heat exchanger (HGHX), using a coupling of the hygro-thermal simulation software DELPHIN with Modelica. The aim was to study the influence of different HGHX sizes and assemblies as well as the impact of passive cooling on the systems efficiency. We found that the required ground area could be reduced by up to 70 % compared to the recommendation of German standard when the pipes are placed in multiple layers. Passive cooling is possible but has a negligible effect on the systems efficiency.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2642 ◽  
Author(s):  
Yi Zhang ◽  
Guanmin Zhang ◽  
Aiqun Zhang ◽  
Yinhan Jin ◽  
Ruirui Ru ◽  
...  

Frost layer on the outdoor air heat exchanger surface in an air-source heat pump (ASHP) can decrease the system coefficient of performance (COP). Although the common defrosting and anti-frosting methods can improve the COP, the periodic defrosting not only reduces the system energy efficiency but also deteriorates the indoor environment. To solve these problems, it is necessary to clearly understand the frosting phenomenon and to achieve the system frost-free operation. This paper focused firstly on the analyses of frosting pathways and frosting maps. Followed by summarizing the characteristics of frost-free technologies. And then the performances of two types of frost-free ASHP (FFASHP) systems were reviewed, and the exergy and economic analysis of a FFASHP heating system were carried out. Finally, the existing problems related to the FFASHP technologies were proposed. Results show that the existing frosting maps need to be further improved. The FFASHP systems can not only achieve continuous frost-free operation but reduce operating cost. And the total COP of the FFASHP heating system is approximately 30–64% higher than that of the conventional ASHP system under the same frosting conditions. However, the investment cost of the FFASHP system increases, and its reliability also needs further field test in a wider frosting environment. In the future, combined with a new frosting map, the control strategy for the FFASHP system should be optimized.


2012 ◽  
Vol 238 ◽  
pp. 478-481
Author(s):  
Zhen Qing Wang ◽  
Yan Chen ◽  
Hai Xia Wang

An air source heat pump system (ASHPS) was set up, which provided space heating and cooling, as well as hot water for an office building in Tianjin. Its operating performance in winter was evaluated based on test data. Considering the local abundant solar radiation and the way to provide energy in an office building, a simulation study was carried out on the combsystem of ASHP and flat plate air collector (FPAC). The effects of collector area and its outlet parameters on the heating performance of ASHP were studied, and the favorable operating and matching mode were recommended. The results indicate that ASHPS is a technically viable method in Tianjin in winter, but not economically, and the air-solar combsystem should be taken into account for its massive replacement for conventional energy.


Author(s):  
Michael J. Kazmierczak ◽  
Abhishek Gupta

Experiments were performed on a heat exchanger equipped with multiple thermoelectric (TE) modules. The TE-HX serves as the basic system component in a simple hydronic modular Peltier heat pump system designed to provide chilled or hot water for domestic use (or supplementary building climate control) of small residences [1]. The present work focuses on the detailed convection analysis inside the TE-HX component when 10 thermoelectric modules are utilized. The local heat transfer coefficient at different points along the channel are measured at steady-state, first, when a continuous heater is installed and then when replaced with 10 TE modules. The experimental heat transfer coefficients obtained are compared with available empirical correlations for “transition” (3000 < ReDh < 7000) turbulent flow inside the channel with fair-to-good results. Next, the resulting coefficient-of-performance of the TE heat pump system is measured with its value depending both on system input power and water flow rate. Testing showed that performance degradation, i.e. reduced COPs, occurred when operated at higher power levels but remains satisfactory for up to 688 Watts with higher flow rate.


2014 ◽  
Vol 529 ◽  
pp. 625-629
Author(s):  
Chao Yi Tan ◽  
Peng Fei Yang ◽  
Meng Meng Wang ◽  
Hai Hua Hu ◽  
Guo Qiang Zhang

In order to improve EER of the ground source heat pump system and reduce heat transfer area of the ground heat exchanger, the authors had developed a series connection ground source heat pump water chiller-heater unit, after theoretical analyses, proved that placing the water chilled in front of the hot water unit could acquire a higher EER comparing to the opposite. In the meantime, this unit had a higher EER than a common water chiller-heater unit or a water chiller-heater unit with condensing heat recovery device. In an air conditioning system of ground source heat pump, employing the above mentioned unit can also reduce heat transfer area of the ground heat exchanger. It suggested that series connection ground source heat pump water chiller-heater unit is a kind of technology with a great development potential.


Sign in / Sign up

Export Citation Format

Share Document