Analysis of Copper Foam/Low Melting Point Alloy Composite Phase Change Material

Author(s):  
HOU Tianrui ◽  
XING Yuming ◽  
ZHENG Wenyuan ◽  
HAO Zhaolong
2018 ◽  
Vol 157 ◽  
pp. 372-381 ◽  
Author(s):  
Huanpei Zheng ◽  
Changhong Wang ◽  
Qingming Liu ◽  
Zhongxuan Tian ◽  
Xianbo Fan

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1508
Author(s):  
Mohammad Ghalambaz ◽  
Mohammad Shahabadi ◽  
S. A. M Mehryan ◽  
Mikhail Sheremet ◽  
Obai Younis ◽  
...  

The melting flow and heat transfer of copper-oxide coconut oil in thermal energy storage filled with a nonlinear copper metal foam are addressed. The porosity of the copper foam changes linearly from bottom to top. The phase change material (PCM) is filled into the metal foam pores, which form a composite PCM. The natural convection effect is also taken into account. The effect of average porosity; porosity distribution; pore size density; the inclination angle of enclosure; and nanoparticles’ concentration on the isotherms, melting maps, and the melting rate are investigated. The results show that the average porosity is the most important parameter on the melting behavior. The variation in porosity from 0.825 to 0.9 changes the melting time by about 116%. The natural convection flows are weak in the metal foam, and hence, the impact of each of the other parameters on the melting time is insignificant (less than 5%).


Sign in / Sign up

Export Citation Format

Share Document