Spatial and temporal evaluation of H2S, SO2 and NH3 concentrations near Cerro Prieto geothermal power plant in Mexico

2020 ◽  
Vol 11 (1) ◽  
pp. 94-104 ◽  
Author(s):  
L.C. Aguilar-Dodier ◽  
J.E. Castillo ◽  
Penelope J.E. Quintana ◽  
Lupita D. Montoya ◽  
Luisa T. Molina ◽  
...  
Geothermics ◽  
2013 ◽  
Vol 46 ◽  
pp. 55-65 ◽  
Author(s):  
Oscar Peralta ◽  
Telma Castro ◽  
Matilde Durón ◽  
Alejandro Salcido ◽  
Ana-Teresa Celada-Murillo ◽  
...  

Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1137
Author(s):  
Dario Colorado-Garrido ◽  
Gerardo Alcalá-Perea ◽  
Francisco Alejandro Alaffita-Hernández ◽  
Beatris Adriana Escobedo-Trujillo

The purpose of this research is the calculation of the exergy destruction of the single-flash and double-flash cycles of a geothermal power plant located on the ladder of the 233 m Cerro Prieto volcano, on the alluvial plain of the Mexicali Valley, Mexico. The methodology developed in this research presents thermodynamic models for energy and exergy flows, which allows determining the contribution of each component to the total exergy destruction of the system. For the case-base, the results indicate that for the single-flash configuration the efficiency of the first and second law of thermodynamics are 0.1888 and 0.3072, as well as the highest contribution to the total exergy destruction is provided by the condenser. For the double-flash configuration, the efficiency of the first and second law of thermodynamics are 0.3643 and 0.4983. The highest contribution to the total exergy destruction is provided by the condenser and followed by the low-pressure turbine.


2021 ◽  
Vol 13 (4) ◽  
pp. 1935
Author(s):  
Vitantonio Colucci ◽  
Giampaolo Manfrida ◽  
Barbara Mendecka ◽  
Lorenzo Talluri ◽  
Claudio Zuffi

This study deals with the life cycle assessment (LCA) and an exergo-environmental analysis (EEvA) of the geothermal Power Plant of Hellisheiði (Iceland), a combined heat and power double flash plant, with an installed power of 303.3 MW for electricity and 133 MW for hot water. LCA approach is used to evaluate and analyse the environmental performance at the power plant global level. A more in-depth study is developed, at the power plant components level, through EEvA. The analysis employs existing published data with a realignment of the inventory to the latest data resource and compares the life cycle impacts of three methods (ILCD 2011 Midpoint, ReCiPe 2016 Midpoint-Endpoint, and CML-IA Baseline) for two different scenarios. In scenario 1, any emission abatement system is considered. In scenario 2, re-injection of CO2 and H2S is accounted for. The analysis identifies some major hot spots for the environmental power plant impacts, like acidification, particulate matter formation, ecosystem, and human toxicity, mainly caused by some specific sources. Finally, an exergo-environmental analysis allows indicating the wells as significant contributors of the environmental impact rate associated with the construction, Operation & Maintenance, and end of life stages and the HP condenser as the component with the highest environmental cost rate.


Geothermics ◽  
2021 ◽  
Vol 96 ◽  
pp. 102203
Author(s):  
Motoaki Morita ◽  
Ayumu Yamaguchi ◽  
Sota Koyama ◽  
Shinichi Motoda

Sign in / Sign up

Export Citation Format

Share Document