Application of radioactive particle tracking and an artificial neural network to calculating the flow rate in a two-phase (oil–water) stratified flow regime

2021 ◽  
pp. 110061
Author(s):  
Roos Sophia de Freitas Dam ◽  
William Luna Salgado ◽  
Roberto Schirru ◽  
César Marques Salgado
2007 ◽  
Author(s):  
Leonor Hernández ◽  
José Enrique Juliá ◽  
Sergio Chiva ◽  
Sidharth Paranjape ◽  
Mamoru Ishii

2021 ◽  
Vol 9 (2A) ◽  
Author(s):  
Roos Sophia De Freitas Dam ◽  
César Marques Salgado

Agitators or mixers are highly used in the chemical, food, pharmaceutical and cosmetic industries. During the fabrication process, the equipment may fail and compromise the appropriate stirring or mixing procedure. Besides that, it is also important to determine the right point of homogeneity of the mixture. Thus, it is very important to have a diagnosis tool for these industrial units to assure the quality of the product and to keep the market competitiveness. The radioactive particle tracking (RPT) technique is widely used in the nuclear field. In this paper, a method based on the principles of RPT is presented. Counts obtained by an array of detectors properly positioned around the unit will be correlated to predict the instantaneous positions occupied by the radioactive particle by means of an appropriate mathematical search location algorithm. Detection geometry developed employs eight NaI(Tl) scintillator detectors and a Cs-137 (662 keV) source with isotropic emission of gamma-rays. The modeling of the detection system is performed using the Monte Carlo Method, by means of the MCNP-X code. In this work, a methodology is presented to predict the position of a radioactive particle to evaluate the performance of agitators in industrial units by means of an Artificial Neural Network.


Author(s):  
Tiago Ferreira Souza ◽  
Caio Araujo ◽  
Maurício Figueiredo ◽  
FLAVIO SILVA ◽  
Ana Maria Frattini Fileti

2013 ◽  
Vol 13 (2) ◽  
pp. 1085-1098 ◽  
Author(s):  
Mohammad Ali Ahmadi ◽  
Mohammad Ebadi ◽  
Amin Shokrollahi ◽  
Seyed Mohammad Javad Majidi

Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 578
Author(s):  
Thomas Papalaskaris ◽  
Theologos Panagiotidis

Only a few scientific research studies with reference to extremely low stream flow conditions, have been conducted in Greece, so far. Forecasting future low stream flow rate values is a crucial and desicive task when conducting drought and watershed management plans, designing water reservoirs and general hydraulic works capacity, calculating hydrological and drought low flow indices, separating groundwater base flow and storm flow of storm hydrographs etc. Artificial Neural Network modeling simulation method generates artificial time series of simulated values of a random (hydrological in this specific case) variable. The present study produces artificial low stream flow time series of both a part of the past year (2016) as well as the present year (2017) considering the stream flow data observed during two different respecting interval period of the years 2016 and 2017. We compiled an Artificial Neural Network to simulate low stream flow rate data, acquired at a certain location of the partly regulated semi-urban stream which runs through the eastern exit of Kavala city, NE Greece, using a 3-inches U.S.G.S. modified portable Parshall flume, a 3-inches conventional portable Parshall flume, a 3-inches portable Montana (short Parshall) flume and a 90° V-notched triangular shaped sharp crested portable weir plate. The observed data were plotted against the predicted one and the results were demonstrated through interactive tables providing us the ability to effectively evaluate the ANN model simulation procedure performance. Finally, we plot the recorded against the simulated low stream flow rate data, compiling a log-log scale chart which provides a better visualization of the discrepancy ratio statistical performance metrics and calculate the derived model statistics featuring the comparison between the recorded and the forecasted low stream flow rate data.


Sign in / Sign up

Export Citation Format

Share Document