Trichoderma harzianum T-E5 significantly affects cucumber root exudates and fungal community in the cucumber rhizosphere

2013 ◽  
Vol 72 ◽  
pp. 41-48 ◽  
Author(s):  
Fengge Zhang ◽  
Zhen Zhu ◽  
Xingming Yang ◽  
Wei Ran ◽  
Qirong Shen
2014 ◽  
Vol 83 ◽  
pp. 250-257 ◽  
Author(s):  
Fengge Zhang ◽  
Xiaohui Meng ◽  
Xingming Yang ◽  
Wei Ran ◽  
Qirong Shen

2018 ◽  
Vol 66 (18) ◽  
pp. 4584-4591 ◽  
Author(s):  
Hao Zhang ◽  
Feng Chen ◽  
Hua-zhu Zhao ◽  
Jia-sen Lu ◽  
Meng-jun Zhao ◽  
...  

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Saiyaremu Halifu ◽  
Xun Deng ◽  
Jun Zhang ◽  
Jiangbao Xia ◽  
Xiaoshuang Song ◽  
...  

In this study, pot experiments were conducted on the seedlings of Pinus sylvestris var. mongolica to study the influence of Trichoderma (Trichoderma harzianum E15) and Ectomycorrhizal fungi (Suillus luteus N94) on the growth of these seedlings. In particular, the effects of these fungi on the fungal community structure in the rhizosphere soil of the seedlings were investigated. Inoculation with Trichoderma harzianum E15 and Suillus luteus N94 significantly (P < 0.05) promoted the growth of the Pinus sylvestris seedlings. The non-metric multidimensional scaling (NMDS) results indicated a significant difference (P < 0.05) between the fungal community structures in the rhizosphere soil of the annual and biennial seedlings. In the rhizosphere soil of annual seedlings, the main fungi were Ascomycota, Basidiomycota, Zygomycota. Ascomycota, Basidiomycota, Mortierellomycota, and p-unclassified-k-Fungi were the main fungi in the rhizosphere soil of biennial seedlings. The dominant genus in the rhizosphere soil and a key factor promoting the growth of the annual and the biennial seedlings was Trichoderma, Suillus, respectively. Both of them were negatively correlated with the relative abundance of microbial flora in the symbiotic environment. Trichoderma had a significant promoting effect on the conversion of total phosphorus, total nitrogen, ammonium nitrogen, nitrate nitrogen, and the organic matter in the rhizosphere soil of the seedlings, while Suillus significantly promoted the conversion of organic matter and total phosphorus.


2014 ◽  
Vol 139 (4) ◽  
pp. 356-363 ◽  
Author(s):  
Xun Li ◽  
Wenying Chu ◽  
Jinlong Dong ◽  
Zengqiang Duan

This study described a simple and quick method to detect trace quantities of a non-reducing sugar (viz. sucrose) in the root exudates of cucumber (Cucumis sativus) under CO2 enrichment. Sucrose was determined by analyzing fructose and glucose before and after invertase digestion using high-performance liquid chromatography. Using this technique, the optimal hydrolysis condition was 5.00 μg·mL−1 invertase for 10 minutes. The detection limit of ultraviolet-visible detector by post-column derivatization with tetrazolium was 0.25, 0.43, 0.48, and 1.95 μg·mL−1 for fructose, glucose, sucrose, and maltose, respectively, and sensitive enough for determination of sugars in root exudates. The dry weight of cucumber at the seedling stage (19 days after transplant) increased by 58.4% when the CO2 level was elevated from 380 to 1200 μmol·mol−1, whereas the differences were not significant at the initial fruiting stage (63 days after transplant). The photosynthesis rate in 1200 μmol·mol−1 CO2 was 58.0% higher than that in 380 μmol·mol−1 CO2 at the seedling stage and 74.2% higher at the initial fruiting stage. Total amount of sugars in cucumber root exudates was significantly increased with increasing CO2 concentration. The total sugars in root exudates increased by 130.4% and 102.3% in 1200 μmol·mol−1 CO2 compared with that in 380 μmol·mol−1 CO2 at seedling and initial fruiting stages, respectively. Elevated CO2 altered sugar composition in root exudates. Sugars in root exudates released per plant were significantly higher at the initial fruiting stage than that at the seedling stage, whereas the differences in sugars released per gram of root tissue between these two growth stages were not significant. Our results suggest that sugars were increased only in as much as root mass increased. This study provides a simple and quick method to detect 1 to 500 μg·mL−1 sugars in root exudates, and the results illustrate the variation in the sugar composition in cucumber root exudates among the CO2 levels and growth stages.


2019 ◽  
Vol 47 (2) ◽  
pp. 257-266 ◽  
Author(s):  
X.G. Zhou ◽  
J. Wang ◽  
X. Jin ◽  
D.L. Li ◽  
Y.J. Shi ◽  
...  

2007 ◽  
Vol 74 (3) ◽  
pp. 738-744 ◽  
Author(s):  
Corey D. Broeckling ◽  
Amanda K. Broz ◽  
Joy Bergelson ◽  
Daniel K. Manter ◽  
Jorge M. Vivanco

ABSTRACT Plants are in constant contact with a community of soil biota that contains fungi ranging from pathogenic to symbiotic. A few studies have demonstrated a critical role of chemical communication in establishing highly specialized relationships, but the general role for root exudates in structuring the soil fungal community is poorly described. This study demonstrates that two model plant species (Arabidopsis thaliana and Medicago truncatula) are able to maintain resident soil fungal populations but unable to maintain nonresident soil fungal populations. This is mediated largely through root exudates: the effects of adding in vitro-generated root exudates to the soil fungal community were qualitatively and quantitatively similar to the results observed for plants grown in those same soils. This effect is observed for total fungal biomass, phylotype diversity, and overall community similarity to the starting community. Nonresident plants and root exudates influenced the fungal community by both positively and negatively impacting the relative abundance of individual phylotypes. A net increase in fungal biomass was observed when nonresident root exudates were added to resident plant treatments, suggesting that increases in specific carbon substrates and/or signaling compounds support an increased soil fungal population load. This study establishes root exudates as a mechanism through which a plant is able to regulate soil fungal community composition.


Sign in / Sign up

Export Citation Format

Share Document